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FOREWORD

This Final Report covers the work accomplished by the McDonnell Douglas
Astronautics Company -~ East (MDAC-E), St. Louis, Missouri, during the period
from 29 June 1971 thru 31 July 1973 in thé evaluation of boron-aluminum for
Space Shuttle components. This werk was conducted under sponsorship of the
Research and Process Technology Division, Product Engineering and Process
Technology Laboratory of the George C. Marshall Space Flight Center (MSFC),
National Aeronautics and Space Administration (NASA). The contract identifica-
tion is NAS 8-27735, "Design, Process Development, Manufacture, Test and Evalua-
tion of Boron-Aluminum for Space Shuttle Components', dated 29 June 1971,

Mr. R. L., Nichols, S&E-PT-MXS, is the NASA MSFC Contracting Officer Representa-
tive (COR} under supervision of Mr. Edwin L. Brown; their help and guidance in
this program have been most appreciated.

The program was performed by the Advanced Composites Group, MDAC~E, with
Mr. R. A. Garrett serving as Program Manager. Significant contributions-to this

program have been made by the following MDAC-E personnel:

Mr., John T. Niemann, Materials and Processes Development
Mr. W. J. Lewis
Mr. D. C. Ruhmann
Mr. Owen R. Otto, Strength Analysis
Mr. R. E. Bohlmann
Dr. R. A. Melldiere
Mr. F. J. Vyzral
Mr. Nick M. Brown, Structural Design and Fabrication Coordination
Mr. R. A, Benjamin
Mr. F. Pacotti
Mr. Robert E. Heinrich, Manufacturing
Mr, P. R. Arzt
Mr, F. 5. Pogorzelski

Their contributions to the report and the completed program are gratefully

acknowledged.
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ABSTRACT

A multi-phase bhoron-aluminum design and evaluation program for Space Shuttle
Components was conducted, culminating in the fabrication of a 1.22 m (48 inch) x
1.83 m (72 inch) boron-aluminum compression panel capable of distributing a
point load of 1555 kN (350,000 lbs) into a uniform running load at a temperature
of 589°K (600°F). This panel was of the skin-stringer construction with two in-
termediate frame supports; seven unidirectional stringers varied in thickness
from 5 plies to 52 plies and the i:%- rad (+45°) skin was contoured to thicknesses
ranging from 10 plies to 62 plies. Both the stringers and the skin incorporated
Ti-6A1-4V titanium interleaves to increase bearing and in-plane shear strength.
The strength and load redistribution characteristics of this panel design were
verified by extensive mechanical property testing, a full length 1.83 m (72 inch)
stringer element test at room temperature to 100% design ultimate load, and a
test of a 1.22 m (48 inch) x 0.61 m (24 inch)} component panel to 1780 kN
(400,000 1bs, 115% design ultimate)} at 589°K. (600°F). Tﬁese test results have estab-
lished full confidence in the Compression Panel design,

The five discrete program phases were Materials Evaluation, Design Studies,
Process Technology Development, Fabrication and Assembly, and Test and Evaluation.
In the Materials Evaluation phase, incoming material quality and mechanical pro-
perty test results were generally better and more consistent than those previous-
ly obtained. During the Process Technology Phase, production processes were
optimized and the results expressed as Process Specifications which governed the
manufacture of the compression panel and test components, Design Studies of
several structures were conducted as well as trade-off studies of the Compres-
sion Panel configuration to determine the best structural approach; standard
analysis techniques suitably modified for the particular composite characteris-
tics were used, Fabrication and Assembly of the three test structures utilized
mechanical forming of flat packs prior to bonding for stringer fabrication and
several Improved lay-up machining and drilling techniques, Under Test and
Evaluation, an elastic foundation structure was used successfully in the Com-
ponent Panel test set-up to simulate full size panel stiffness.

The full size Compression Panel test assembly has been completed and delivered

to MSFC.
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1.0 INTRODUCTION AND PROGRAM SUMMARY

This Final Report describes the work accomplished on the design, process
technology development, manufacture, test and evaluation of boron-aluminum for
Space Shuttle components under NASA Contract NAS 8-27735. The objective of this
program was the development of sufficient technology to permit application of
boron-aluminum to Space Shuttle components with high confidence. In addition to
the acquisition of a significant quantity of mechanical property and process
technology data, the realization of this objective was further demomstrated by
fabrication and test of.a 1.22m (48 inch) x 1.83m (72 inch) boron-aluminum com—
pression panel capable of distribution a point load of 1555 kN (350,000 1bs) into
a uniform running load, within a peaking factor of 1.3, at a temperature of 58%°K
(600°F). Small component testing has been successfully performed by MDAC-E at
room temperature and 589°K (600°F) to verify the compression panel design; however,
testing of the delivered full size Compression Panel Assembly will be accomplished
by MSFC. The Compression Pamel, shown in Figure 1-1, has been completed and delivered
to MSFC for such structural testing.

A total of 21 monthly progress reports and 4 Quarterly Reports (References 1,
2, 3, and 4) have been submitted to date which provide a detailed development
history of this program. This Final Report is intended to summarize these
developments, present all pertinent data, draw conclusions relating to program
progress and to recommend future work which in our opinion sheuld be initiated
or continued.

The contracted effort included the following five program phases:

Phase I — Materials Evaluation
Phase II - Design Studies
Phase III

Process Technology Development

Phase IV - Fabrication Assembly

Phase V - Test and Evaluation

The Phase I, Materials Evaluation, work took place principally during the

first three quarters of the program and included both review and characterization
of incoming material and the generation of sufficient mechanical property data
(1100 series aluminum alloy matrix and 5.6 mil boron filament) for compression
Panel design purposes. Data were determined for both multilayer unidirectional

laminates and crossply laminates.

1-1
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In Phase I, Amercom Inc, was selected as a boron—aluminum monolayer and bi-
layer material supplier on the basis of a review of material from both Harvey
Aluminum and Amercom Inc., Over 250 kg (550 1bs) of material was purchased from
Amercom for purposes of this program. Approximately 12.1% of all material supplied
(45.7 pounds) was rejected for a variety of reasons; the most serlous defect was
poor diffusion bonds in bilayer material. The frequency and type of various
material defects experienced during the program required 100% inspection of all
material received. Over 1000 coupon tension tests were performed to verify mono-
layer and bilayer strength - of which 1.2% (4.5 lbs) fell below minimum specifica-
tion filament strength requirements (400 ksi, minfmum). However, it should be
noted that the material supplied by Amercom for this program was judged to be of
significantly better quality than previously available material,

Phase I mechanical property element tests performed totaled over 500,
and included tests at both room temperature and 589°K (600°F). These tests were
intended primarily to verify initially established panel design allowables; the
test results indicated that the design gllowables used for panel desgign were con-
servative (from 0 to 30%, depending on type loading and temperature) and that the
results exceeded (and were more consistent than) previously obtained data. Signi-
ficant areas of improvement include crippling (compression) strength of boron-
aluminum hat section elements and the development of meaningful rail shear test
techniques and allowables,

In Phase II, Design Studies, components and assemblies representative of
full scale hardware were designed and analyzed and included a 1.22 m x 1.83 m
(48 inch x 72 inch) compression panel, a thrust structure beam of truss design, a
thrust structure beam of shear web design, representative joint designs and panel
components and element designs. Three of these structures designed under Phase II
were also fabricated for structural testing; i.e., the Stringer Test Assembly shown
in Figure 1-2, the Component Panel Test Assembly shown in Figure 1-3 and finally
the full size Compression Panel Test Assembly shown in Figure 1-1. 0Of the re-
maining designs, the truss beam and shear web beam thrust structure configurations
shown in Figures 1l-4 and 1-5 were carried far enough to determine an overall
structural arrangement, size all elements and calculate structural weights for
comparison purposes. For the loading cases considered, the shear web beam design was
37.5 kg (82.8 1lbs), or about 8%, lighter than the truss beam design (929.4 lbs vs

1012.2 1bs). For all design studies, specific analysis techniques tailered for

1-3
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metal matrix composites were developed, based in part on techniques already developed
for resin matrix composites and in part on conventional metals structures techniques.
These techniques were fully verified by successful testing of the Stringer Test
Assembly and the Component Panel Test Assembly conducted at room temperature and 600°F

respectively - both in achieved ultimate strength and demonstrated load distribution.

COMPLETED ASSEMBLY — STRINGER TEST COMPONENT

Figure 1=2

Phase III, Process Technology Development, was concerned with improving the
procedures and techniques used to fabricate boron-aluminum structures from monolayer
foils. The primary emphasis was placed on the cleaning, coating and bonding thermal
cycles associated with the eutectic bonding process and on improving lay-up procedures
to reduce fabrication costs, As a result of these studies, the quality and
reliability of eutectic bonded parts were improved significantly at the same time
that processing costs were reduced, Process specifications were prepared on the
basis of Phase III study results and these documents governed the successful

fabrication of test components and the full size compression panel.

1-4
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Fabrication and assembly under Phase IV included manufacture of selected
joint configurations, the Component test specimen, the Stringer element test
specimen and the complete 1,22 m (48 inch) x 1.83 m (72 inch) Compression Panel.
These units were successfully fabricated and delivered to the responsible test
apgencies. Notable in the fabrication achievements were the development of a
mechanical forming technique which enabled producing the variable cross section
stringers comprised of between 52 to 5 plies with "hard to form" titanium inter-
leaves and the fabrication of the large 1.22 m by 1.83 m (4 x 6 ft.) variable
thickness complex skin of 62 to 10 plies, also with titanium interleaves. The
successful fabrication of these test articles has demonstrated the present day
capability to produce complex boron-aluminum composite assemblies of consistent
sound quality.

Work performed by MDAC-E under Phase V, Test and Evaluation, included performance
of joint tests and the component and stringer element tests. Further, a Test plan
was prepared by MDAC-E for the Compression Panel test by MSFC to be followed by
an evaluation by MDAC-E of all program testing. Under Phase V testing, two
significant milestones in panel design verification were achieved: successful
testing to ultimate design load (or equivalent) of the 1.83 m (72 inch) Stringer
Test Assembly at room temperature and the .61 m (24 inch) x 1.22 m (48 inch)
Component Panel Test Assembly at 589°K (600°F). In the test of the Stringer Test
Assembly, a maximum load of 100,000 pounds was applied to the test assembly at
room temperature} this is equivalent to the Stringer Design Ultimate Load (DUL) of
50,000 pounds (22,680 Kg) at 589°K (600°F). In the Component Panel test at (600°F),
a maximum load of 400,000 pounds (181,440 Kg) (> 1.15 times DUL) was achieved at
589°K; subsequent panel inspection revealed only minor structural damage. The
results of these tests, coupled with the evaluation of associated test strain and
deflection data, fully verified the full size Compression Panel design. A test
Plan for MSFC testing of the Compressfon Panel has also been completed and is
included as Appendix B of this report,

From the results of this program it may be concluded that the program objec-
tive has been met; that is, sufficient technology and test data have been developed
to permit application of boren-aluminum to Space Shuttle components with high con-
fidence., Mechanical property data and raw material quality have now stabilized to
the point where rational and attractive design allowable data have been developed.
The processing required for boron-aluminum fabrication has been clearly transformed

from a laboratory operation status to a production shop status with appropriate
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process speclifications developed to provide part quality assurance. The design
and fabrication technology have also been significantly advanced. Complex, tapered
and contoured structures utilizing sophisticated re-inforcement techniques have
been successfully designed, fabricated and tested to excess of design ultimate
loads at temperatures up to 589°K (600°F) to provide confirmation of the developed
technoleogy. In summary, the boron-aluminum material system has been developed to
the point where its use can provide significant weight savings, system performance
improvements and increased payload capabilities for the Space Shuttle or other

vehicle systems.

1-10
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2.0 SUMMARY OF WORK ACCOMPLISHED BY PROGRAM PHASE

Work accomplished under this contract was in each of five distinct program
Phases; namely: ‘
Phase T -~ Materials Evaluation

Phase I1 - Design Studies

Phase TII - Process Technology Development
Phase IV - Fabrication and Assembly
Phase V - Test and Fvaluation

The results in each phase are discussed separately below.

2.1 Phase I - Materials Evaluation

The work to be accomplished under Phase I included both review and char-
acterization of incoming material and generation of sufficient mechanical pro-
perty data using 1100 series aluminum alloy matrix and 5.6 mil boron filament
for compression panel design purposes.

In terms of tests, they included longitudinal tensile, transverse tensile,
compression, rail shear, diagomal tension, crippling and interlaminar shear at
room temperature and 589°K (600°F). Data were determined for both multilayer uni-
directional laminates and crossply laminates.

The data derived from incoming material evaluation and from mechanical pro-
perty testing are described separately below.

2.1.1 Boron-Aluminum Supplier and Monoclayver Evaluation - The materials evalua-

tion phase of this program had two objectives. The first was to select a
material supplier from the two available boron-aluminum fabricators who were
Amercom, Inc. and Harvey Aluminum Co. This selection was based on an.assessment
of 13.6 kg (30 1bs) of material submitted for evaluation by each company. The
second objective was to assess the quality of the material being received for
use on the program to assure conformance to procurement specification require-

ments,

2,1,1,1 Selection of Material Supplier - Areas of special interest in the

selection of the supplier included the surface quality, bond quality, and fila-
ment characteristics of each supplier's material. A summary of the quality

assessment of the material from each supplier is presented below; a more detailed

2-1
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discussion is given in Reference 1.

Surface quality characteristics including surface roughness, surface flaws
such as laps and cracks, cleanliness, and thermal wrinkles were of prime concern
because of their effect on the eutectic bonding processes. Longitudinal surface
flaws resembling laps were observed in both the Harvey and Amercom material.
These defects occurred at the midpoint between filaments and were the result of
flow of aluminum around the boron during the diffusion bond cvcle. In general,
the frequency of these defects was greater in Amercom material, but the severity
was more pronounced in Harvey foils. The Amercom material was determined to be
adequate for use with respect to these defects whereas the Harvey material was
not acceptable due to the severity of the laps and the large number of resulting
splits observed.

Initial shipments of Harvey material had the best surface finish of any
material tested; however, later shipments were of considerably lower quality due
to many crossovers, laps and residual parting compound. Amercom, on the other
hand, showed quality improvement with time, and their last shipment in the 13.6 kg
evaluation order was considered acceptagle for eutectic bonding. Material supplied
by Amercom was consistently cleaner than Harvey supplied material which was
covered with an oil film and much residual parting compound.

To evaluate monolayer bond quality, visual examination, in conjunction with
hand peel testing, and three types of nondestructive testing (radiographic ex-
amination, ultrasonic ingpection, and infrared testing) were utilized. Of the
various methods of bond quality evaluation, the hand-peel test proved to be the
most reliable and expedient method, It was possible to detect complete disbonds
but not weak bonds with ultrasonic C-scan imspection techniques; ﬁowever; such
complete disbonds were also observable visually prior to ultrasonfe Inspection,
After an assessment of the bond quality of the 13.6 kg (30 1lbs) of material from
each supplier, the Amercom material was judged to be acceptable in this regard
whereas Harvey Aluminum material was unacceptable. It should be noted that the
best diffusion bond quality was rated as acceptable only, and was found to be in
general need of further improvement.

Filament defects such as broken filaments, poor filament spacing, and fila-
ment crossovers were also evaluated in this program. Representative sheets of
Amercom and Harvey monolayer were radiographed to detect filament defects. The

most serious defects found by radiography were filament crossovers and uneven
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filament spacings. Very few broken filaments were observed. The severe cross-
over regions observed in the Harvey material were judged unacceptable. Amercom
also experienced some difficulty with crossovers but their material, on the
average, was judged aeceptable.

The presence of fiber defects observed by radiographic examination usually
were also detected visually, especially the cases of crossovers and poor spacing.
Therefore, the value of radiographic examination as a quality control method was
only to document defects already observed wvisually,

Based on the above monolayer evaluation, Amercom, Inc. was selected as the
supplier of the remainder of the boron-aluminum material required for the program,
and was used as the source for all composite material used during the program.

2.1.1.2 Evaluation of Incoming Production Material - Approximately 172 kg

(380 1bs) of boron-aluminum monolayer and bilayer tape were received and inspected
for use on this program. A flow chart of the receiving inspection quality as-
surance program i1s shown in Figure 2-1. The controlling documents on which ac-
ceptances or rejections were based were the two material procurement specifica-
tions which cover the basic filaments a;d the monolayer foil. These are McDomnnell
Douglas - St. Louis Specification MMS-583 - "Boron Mono-filament" and MMS-584 -
"Composite Foil, Boron Filament — Aluminum Matrix -~ Diffusion Bonded." These
specifications are appended to Reference 1,

After review of the Certificate of Conformance, all material was evaluated
with respect to surface quality. This step involved determinations of cleanli-
ness, surface finish, and surface flaws. Associated with the surface quality
evaluation was an assessment of filament spacing, filament crossovers, and broken
filaments, Surface finish was not found to be a problem, but other surface ir-
regularities which resulted from poor filament spacing and crossovers and general
cleanliness did result in some rejection of materiagl. Approximately 11 kg {(24.2
1bs) or 6.4% of the total purchased material was rejected for the reasons dis-
cussed above,

The next sequential inspection step was that of a diffusion bond quality
evaluation which was accomplished by hand peel tests. In the early days of the
program, both monolayer and bilayer material showed occaslonal evidence of poor
bond quality, and approximately 7.7 kg (17 1bs) or 4.5% of material were rejected
for this reason, Monolayer bond quality improved markedly during the program and

was not a serious problem during fabrication of the panel; however, poor diffusion
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[MATERIAL RECEIVED AT NDAC-EAST]

{aj
MATERIAL CERTIFICATE OF CONFORMANCE
REVIEWED

{b)

SURFACE QUALITY EVALUATION
1. CLEANLINESS

2. SURFACE FINISH
3. SURFACE FLAWS

REJECTED r T ERIAL RETURNED

T0 SUPPLIER
' Y

ACCEPTED

FILAMENT QUALITY EVALUATION
1. BROKEN FILAMENTS

2. POOR FILAMENT SPACING
3. FILAMENT CROSS0VERS

REJECTED

ACCEPTED A

REJECTED
DIFFUSION BOND QUALITY EVALUATION

ACCEPTED 4

(e}
MECHANICAL PROFERTIES EVALUATION

REJECTED

ACCEPTED

REJECTED

ACCEPTED

[MATERIAL CERTIFIED FOR USE ON PROGRAM|

FLOW CHART FOR RECEIVING INSPECTION QUALITY
ASSURANCE PROGRAM
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bonds in the bilaver material resulted in localized areas of delaminations in com-
pleted test specimens and structures., These defective foils had previously passed
the hand peel tests; however detection of weak diffusion bonds in this bilayer
material by peel testing or by any other technique is unreliable. Figure 2-2

shows a cross—-section of bilayer which illustrates fiber touching and weak bond
lines, Additional work must be conducted to establish reliable NDE techniques for

multiply material.

175X

BILAYER FOIL Figure 2-2

The mechanical properties evaluation consisted of a verification through
strength testing of incoming material, These tests served as a check on the
initial filament strength and ensured that processing parameters were controlled
adequately to prevent significant filament degradation. Approximately 2 kg
(4.5 1bs) or 1.2% of the total was rejected because of low strength. Though the
low rejection rate showed the material to be generally acceptable, significant
variation was noted in the results of the strength determination tests. The cu-
mulative frequency distribution of the filament bundle strength for all monolayer
and bilayer material received on the program is presented in Figure 2-3. These
data are based on 706 monolayer tests and 407 bilayer tests. The method used to

calculate the filament bundle strength has been previously reported in Reference
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Figure 2-3

In summary, the following quantities of monolayer and bilayer boron-aluminum

were rejected for the reasons shown:

DEFECT

Surface Quality
{Visual)

Poor Diffusion Bond
(Hand Peel)

Low Filament Strength
(Below Ave Ftu 400 ksi)

TOTAL

% OF TOTAL QUANTITY

kg (lbs) REJECTED (= 172 kg or 380 lbs)

11 kg (24.2 1ibs) 6.4%
7.7 kg (17 1bs) 4.5%
2 kg (4.5 1bs) 1.2%

12,1%

20.7 kg (45.7 1bs)

The quanitites and percentages are significantly lower than data for early boron-

aluminum material but still indicate areas where further improvement 1s needed,
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2,1.2 Mechanical Property Test Results - Element tests of boron-—aluminum speci-

mens were conducted to verify predicted mechanical properties essential for the
analysis of the compression panel. These test specimens were fabricated from
both monolayer and bilayer material containing 5.6 mil boron filaments. In
general, it was found that essentially the same strength properties were obtained
from the two material configurations when the filament volume fraction was.the
same and the "as-received" material was of good quality.

Strength and stiffness properties of boron-aluminum laminates are derived
from the fundamental mechanical properties of a unidirectional laminate. Average
unidirectional laminate properties determined in the element test program are
summarized in Figure 2-4., These properties and other design data employed in the
compression panel analysis are discussed in detail in subsequent sections.

2,1.2,1 Longitudinal Tension — Determination of stress-strain response,

ultlmate strength (F Yy and strina (stu), and initial values of tangent modulus

(E ) and major Poisson's ratio (uLT),Lat both room temperature and 589°K (600°F)
were primary test objectives. Average tensile properties are shown in Figure 2-5,
Ten tensile coupons and five sandwich beam specimens were tested at room
temperature, and ten tensile coupons were tested at 589°K (600°F). 1In each group,

five tensile coupons were made from monolayer material and five from bilayer
material. The average failure strength of tensile coupons fabrlcated from mono-
layer was 1110.0 MN/m (161 KSI) at room temperature and 1068.0 MN/m (155 K81} at
589°K (600°F). The respective values for bilayer material specimens were 1116.0
MN/m2 (162 KSI) and 992.0 MN/m2 (144 KSI), indicating that use of bilayer material
results in an 8% greater reduction in strength at elevated temperature than speci-
mens fabricated from monolayer material. However, this apparent difference between
monolayer and bilayer material is considered inconclusive. As expected, sandw1ch
beam specimens produce a somewhat higher average ultimate strength (1336.0 MN/m )
than the tensile coupons.

The longitudinal tensile coupons shown in Figure 2-6 are 22.9 cm (9.0 in.)
long and 2.54 em (1,0 in.) wide with a 7.62 cm (3.0 in.) gage length and 7.62 cm
(3.0 in.) end tabs. Each end tab has a six mil aluminum ply adhesively bonded to
both sides to prevent the serrated Instron jaws from penetrating the outer boron-
aluminum ply and damaging the boron filaments. THe coupon configuration including
the location of strain gages is presented in Figure 2-7, Back to back strain
gages were used to check for the presence of bending during test although self-

aligning Instron grips are used to minimize bending of the specimen. Room
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ULTIMATE INITIAL
ULTIMATE POISSON™S|  TEST
PROPERTY TEMPEOF:(ATURE STRENGTH | “srpam MODULUS raTo | METHOD
2 m/m 2 jinb
MN/m | KSI H GN/m< | 10° PSI
LONGITUDINAL
TENSION
R.T. 1110,0 | 161.0| 5740 207.0- [ 30,0 0.25 COUPON
- -L 589 1068.0 [1550] 6440 186.0 | 27.0 0.30 COUPON
T
LONGITUDINAL
COMPRESSION -
% RT. |00 |3430] 10600 | 2430 | 363 | 0.28 BEAM
-t -—L
é'
I
TRANSVERSE
TENSION
R.T. 1012|147 3290 | 1260 | 183 | 0.8 COUPON
L 588 269 | 39| 6480 80.5 | 117 | 0.095 COUPON
T
TRANSVERSE
COMPRESSION
R.T. 258.0 | 37.5| 24000 972 | 14, 0,16 BEAM
L 589 66.1 ] 96| 10700 | 1095 | 159 0.17 BEAM
iT
SHEAR
- R.T. 6.2 | 67| >20000 58,6 | 8.5 - RAIL SHEAR
l%T 589 158 | 23| >20000 26 | 40 - RAIL SHEAR
e
UNIDIRECTIONAL LAMINATE MECHANICAL PROPERTY SUMMARY
(Average Values)
Figure 2=4
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e | evevne| Ay | S |UTRTE G| T |
% | °F e | kst | M [ onm? | 108 psi RATIO ®
coupoN | RT. | RT. |MONOLAYER | 11100 | 1612 | 5¢0 | 200.0 | 300 025 1.3
couroN | RT. { R.T. |BILAYER | 11180 | 162.2 | 6350 2070 | 300 0.24 123
COUPON | 589 | 600 |MONOLAYER| 1068.0 | 1550 | 6440 186.0 | 270 0.30 4.8
COUPON | 589 | 600 |BILAYER 9920 | 1438 | 6640 159.8 | 2.2 0.36 84,7
BEAM RT. | RT. {BILAYER | 13320 | 1936 | 7255 1970 | 286 0.38 -

NOTE: RESULTS ARE AVERAGE VALUES BASED ON TESTS OF FIVE SPECIMEN MINIMUM IN EACH GROUP.

AVERAGE LONGITUDINAL TENSILE PROPERTIES OF BORON AL UMINUM

Figure 2=5
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AFTER TEST AT ROOM TEMPERATURE
BORON ALUMINUM LONGITUDINAL TENSILE COUPONS
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NI
¥ —-—\%—#ﬁ————— — |-t 1

3.0 - 30

(1) 6 MIL, 1100 ALUMINUM TAB ADHESIVE BONDED TO SPECIMEN (TYP 4 PLACES)
(Z) 0,095 INCH DIA ALIGNMENT PIN HOLE

(3) BORON FILAMENT DIRECTION

(¥) UNIAXIAL LONGITUDINAL GAGE, L)

(5) UNIAXIAL LONGITUDINAL GAGE, L,

() ROSETTE LONGITUDINAL GAGE, L3

(7) ROSETTE TRANSVERSE GAGE, T3

TENSILE COUPON FOR LONGITUDINAL TENSION TESTS Figure 2_7

temperature coupons were loaded to failure at a loading rate of .0762 em/min
(.030 in./min.). Elevated temperature coupcns were soaked at 589°K (600°F) for
at least 30 min. before Being loaded to failure at a rate of ,127 em/min., (.050 in./
min.). Continuous load-strain curves were recorded for each specimen.

Sandwich beam specimens shown in Figure 2-8 are 55.9 cm (22.0 in.) long and
2,54 em (1.0 in.) wide. Faceplates are adhesively bonded to an aluminum honey-
comb core which is 3.81 cm (1.50 in.) thick. In a 7.62 cm (3.0 in.) section at
the center of the specimen, bonding is prevented by inserting teflon tape between
the core and faceplate, This technique minimizes the influence of core on face-
plate and allows the faceplate to respond in a manner similar to a temsile coupon.

The specimen configuration was tested with a four point load application as il-

2-1
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lustrated in Figure 2-9. Specimens were loaded to failure at room temperature
with a loading. rate of .127 em/min. (.050 in./min.). Continuocus load-strain curves
were recorded for each specimen. WNo elevated temperature tests were planned using
sandwich beams, since adhesive bond failures were anticipated at 589°K (600°T)
test temperature.

Typical tensile coupons and sandwich beam specimens after test are shown in
Figures 2-6 and 2-8, The failure mode in all specimens was a tensile failure
with no evidence of bending or delamination.

Average stress—strain curves for coupons and sandwich beam specimen are shown
in Figures 2-12, 2-13 and 2-14, All curves are essentially linear to failure.
Initial modulus obtained from tensile coupons is slightly higher than that from
sandwich beam specimen.

2.1.2,2 Transverse Tension - Determination of stress-strain response, ulti-

mate transverse tensile strength (F;u) and strain (e;u), initial wvalues of elastic
modulus (E;), and minor Poisson's ratio (u;L); at both room temperature and 589°K
(600°F) were primary test objectives of transverse testing performed under this
contract. Average transverse tensile properties from these tests are shown in
Figure 2-15.

Tive tensile coupons and five sandwich beams were tested at room temperature,
and six tensile coupons and five sandwich beams were tested at 589°K (600°F). All
tensile coupons were made from bilayer material which was of good quality. The
sandwich beam specimens also were maderusing bilayer material cbtained early in
the program and it was of poor quality. As a result, values of ultimate strength
obtained from sandwich beam tests were significantly less than those determined
using tensile coupons and were neot considered tobe representative of well bonded
boron-aluminum composite.

The transverse tensile coupons, shown in Figure 2-17, are 22.9 em (9,0 in.)
long and 2.54 em (1.0 in.) wide with a 7.62 cm (3.0 in.) gage length and 7.62 cm
(3.0 in.) end tabs. Each end tab has a six mil 1100 aluminum ply adhesively
bonded to both sides to prevent damage from the serrated Instron jaws. The cou-
pon configuration including the location of strain gages is illustrated in Figure
2-17. Back to back gages are used to check for the presence of bending during test.

All coupons were loaded to failure at a loading rate of ,023 cm/min, (.009 in,,
min,). Typical failed specimens are shown in Figure 2-18, Elevated temperature
specimens were soaked at 589°K (600°F) for at least 30 min. before loading. Con-

tinuous load-strain curves were recorded for each specimen.
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BEFORE TEST

AFTER TEST AT ROOM TEMPERATURE

BORON ALUMINUM SANDWICH BEAM SPECIMENS FOR LONGITUDINAL TENSILE TESTS
Figure 2-8
2-13
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SANDWICH BEAM SPECIMEN USED FOR LONGITUDINAL TENSILE TESTING

Figure 2-9
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TEST ULTIMATE ULTIMATE INITIAL INITIAL | FILAMENT
TEST meTHop | TEMPERATURE STRENGTH STRAIN MODULUS PDISSON'S VOLUME
RATIO %
Ok | 9 Imnm? | ks wn/n Fanm? 1108 psy
COUPON RT. | RT. | 1002 | 147 3290 1260 | 183 0.180 -
COUPON 58¢ | 600 26.9 3.9 6480 805 | 117 0,095 .3
NOTES: 1. RESULTS ARE AVERAGE VALUES BASED ON TESTS OF FIVE SPECIMEN MINIMUM IN EACH GROUP.
2. BILAYER PLY MATERIAL
AVERAGE TRANSVERSE TENSILE PROPERTIES OF BORON ALUMINUM
Figure 2-15
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(&) ROSETTE LONGITUDINAL GAGE, L3

(7) ROSETTE TRANSVERSE GAGE, T3

TENSILE COUPON USED FOR TRANSVERSE TENSION TEST

Figure 217
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Average transverse tensile stress-strain response at room temperature and

589°K (600°F) are shown in Figures 2-19 and 2-20.

Since transverse tensile pro-

perties are highly matrix dependent, nearly the entire stress-strain curve is

nonlinear.

16

TENSILE STRENGTH, FtT - Kl
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ROOM TEMPERATURE

1500 2000

0 500 1000 2500 3000 3500
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AT ROOM TEMPERATURE Fi
igure 2-19
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24 il
LT
s / TENSILE COUPON
= > { BILAYER MATERIAL
g
8
4
% 1000 2000 3000 2000 5000 6000 7000
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Figure 2-20
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2,1.2.3 Longitudinal and Transverse Compression « Determination of atress-

strain response, ultimate longitudinal (Fiu) and transverse (F;u) compressive
strengths, initial values of elastic moduli (Ei and E,;), and initial values of
major (uET) and minor (U;L) Poisson's ratioc, at both room temperature and 589°K
(600°F) were primary test objectives. Average mechanical properties obtained from

these tests are shown in Figure 2-21,

TEMPERATURE STRENGTH STRAI MODULUS
TYPE TEST MATERIAL Tm/mN RATIO vog%ume
o °F MN/me | KSI K en/m? 1 108 psi

LONGITUDINAL| R.T. R.T. BILAYER 2360.0 { 343.0 10600 243.0 353 0,284 43.6
COMPRESSION

TRANSVERSE R.T. R.T. BILAYER 258.0 37.8 24000 91.2 14,1 0.165 43.5
COMPRESSION

TRANSVERSE 589 600 MONOLAYER 66.1 9.5 10700 109.5 15.9 0.166 -
COMPRESSION

NOTE: 1.SANDWICH BEAM TEST METHOD
2, RESULTS ARE AVERAGE VALUES BASED ON TESTS OF FIVE SPECIMENS MINIMUM IN EACH GROUP.

AVERAGE LONGITUDINAL AND TRANSVERSE COMPRESSIVE PROPERTIES

OF BORON ALUMINUM
Figure 2-21

Longitudinal specimens for tests at room temperature consisted of five sand-
wich beams and six edge-loaded panels, Sandwich beams were used in all transverse
loading tests with five specimens tested at room temperature and five specimens
tested at 589°K (600°F).

Edge-loaded panel specimens were planned for longitudinal compressive tests
at 589°K (600°F) since adhesive bond failures were anticipated if sandwich beams
were used at elevated temperature, To evaluate the test method, six room tempera-
ture tests were conducted, Results from these tests indicated that the edge-
loaded panel method was unacceptable because premature low failure strengths
were obtained, The low failure strengths were caused by facesheet brooming at
the ends of the specimen, Potting the specimen ends to prevent bBrooming was not
successful, Consequently, longitudinal compressive strength at elevated temperature

was not obtained. However, longitudinal compressive strength properties were of litt:

2-20
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importance in the compression panel analysis because failure modes lower than block

compression, such as crippling, always prevailed. The longitudinal modulus at 589°K

is estimated to be 26.0 x 106 psi, based on data from instrumented crippling specimens.
Sandwich beam specimens used for longitudinal compressive tests were identi-

cal to those used in longitudinal tensile tests. Typical failures in longitudinal

beam specimens gre shown in Figure 2-22,

*ARROWS DENOTE LOCATION OF FAILURE

ROOM TEMPERATURE TESTS

BORON ALUMINUM SANDWICH BEAM SPECIMENS

AFTER LONGITUDINAL COMPRESSIVE TESTS Fioure 222
igure 2-

Sandwich beam specimens used for transverse compressive tests are similar to
the longitudinal beam specimen except that the length is reduced from 55.9 cm
(22 in,) to 40.7 em (16 in.,). Typical transverse beam specimens before and after
test are shown in Figures 2-23 and 2-24,

Average longitudinal and transverse compressive stress strain curves are
shown in Figures 2-25, 2-26, and 2-27. The longitudinal curve is essentially linear
to failure; however, the transverse curves at both room and elevated temperature
are non-linear over a majority of loading range.

2.1.2.4 Rail Shear - The purpose of this test was to determine the in-plane
chear stress—-strain response and ultimate shear strength of unidirectional and

1 ; o
i-z rad laminates. Tests were conducted at both room temperature and 589°K

2-21
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(600°F) with a 30 minute soak at temperature prior to test. Average rail shear
test results are shown in Figure 2-28. Typical rail shear test specimens before

test are shown in Figure 2-29,

- e I e Y d .
BEFORE TEST
BORON ALUMINUM SANDWICH BEAM SPECIMENS FOR TRANSVERSE COMPRESSIVE TESTS
Figure 2-23

*ARROWS DENOTE LOCATION OF FAILURE

AFTER TEST AT ROOM TEMPERATURE

BORON ALUMINUM SANDWICH BEAM SPECIMENS FOR TRANSVERSE COMPRESSIVE TESTS
Figure 2-24
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Figure 2-27
ULTIMATE ULTIMATE
TEST SHEAR FILAMENT
FILAMENT NUMBER OF SHEAR SHEAR
EMPERA
orentaTion | seecmen | PLY TEMPERATURE | sTRENGTH STRAIN WoDuLUS VOLUME
e TESTED TERIAL
2 % | ° | mumt | xsi um/m | oN/ne | 108 psi 5
0 vad 3 MONOLAYER | RT. | RT. [55.2/A\| 8.0 15,700 66.2 96 50.3
3 MONOLAYER | 589 | 600 |234A\N| 34 » 10,000 296 43 50.3
3 BILAYER R | RT. | s62 | 67 > 18,000 55.2 8.0 13.9
3 BILAYER s89 | 600 |1s8A\| 23 18,200 2,1 3.3 3,9
/2 rad {909 7 BILAYER RT. | RT. [a62/N\ | &7 » 20,000 62,0 9,0 .5
3 BILAYER se9 | 600 |ise /N[ 23 > 32,000 .5 5.0 44,5
+a/4 rad (+459) 7 MONOLAYER | R.T. | RT. | 2970 .1 4,200 86.1 12.5 39,7
5 MONOLAYER | sss | €00 | 1510 214 > 1,500 £8.2 9.9 38,7
/I\ SHEAR STRENGTH DETERMINED AT STRAIN OF 10,000 yum/m.
/2\ RAIL SHEAR TEST METHOD
AVERAGE IN-PLANE SHEAR PROPERTIES OF BORON ALUMINUM
Figure 2-28
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0 rad 0 rad w2 rad
MONOLAYER BILAYER BILAYER

TYPICAL BORON ALUMINUM RAIL SHEAR SPECIMENS BEFORE TEST
Room Temperature

Figure 2-29

Both monolayer and bilayer material were used to fabricate unidirectional
laminates where the boron filaments are aligned parallel to the rail test fixture
(filament orientation = 0 rad, Figure 2-28). Although the monolayer specimens
possessed higher strength and stiffness properties, most of this difference 1s at-
tributed to the higher filament wvolume fraction for monolayer material. Shear
stress—-strain response of monolayer and bilayer material are shown in Figures 2-30
and 2-31 respectively. Failure modes of unidirectional, O-rad laminates made
from monolayer material are shown in Figure 2-32, Laminates tested at 589°K
(600°F) experienced more shear deformation than laminates tested at room tempera-
ture and failure initiated at the specimen ends.

Specimens with lengths of 20.3 cm (8 in.) and 30.5 cm (12 in.) were tested
to determine if length affected rail shear strength. Results showed that specimen
length had little effect on either shear strength or stiffness; therefore, test
results were not separated by specimen length.

In-plane shear properties of unidirectional laminates were determined using
specimen with filaments oriented both parallel (0 rad) and perpendicular C% rad)

to rails of test fixture. Over the useable loading range of interest, strength

2-25
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and stiffness properties determined by the two methods at both room and elevated

temperature are nearly the same (Figure 2-28).

the twe laminates are similar as shown in Figures 2-31 and 2-33.

FINAL REPORT

the two curves are within the scatter of test data.
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Also, stress-strain response from

Differences in
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ROOM TEMPERATURE
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/ MONOLAYER
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

SHEAR STRAIN, y{T ~pum/m

AVERAGE SHEAR STRESS-STRAIN RESPONSE OF 0-rad BORON ALUMINUM

Figure 2-30
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ROOM TEMPERATURE TEST 589°K (600°F) TEST

FILAMENT ORIENTATION = 0 rad
BORON ALUMINUM RAIL SHEAR SPECIMENS AFTER TEST

Figure 2-32
: 20 i
- 16 T
| | /-‘7-
—
w2 P
= 12 S _ ©= FILAMENT
= & // o= 0 rad | URIENTATION/
= = - A
V8] = |
E ol ® | [ . YV
= |
L H ™ BILAYER MATERIAL & T il
V/0 2440 | RAILSHERR SPECIMEN
0 2,000 4,000 6,000 3,000 10000 12,000 14000 16,000

SHEAR STRAIN, yf_T —um/m

AVERAGE SHEAR STRESS—STRAIN RESPONSE OF UNIDIRECTIONAL BORON ALUMINUM

AT 5899K
Figure 2-33

Shear strains at failure of g-rad laminates are associated with excessive
deformation of the test specimen as shown in Figure 2-34, At shear strains above
about 10,000 um/m, loads applied to the rails are no longer resisted entirely by
shear in the matrix because of the high strain deformation. Instead, loads are
carried primarily by the filaments which can lead to exaggerated reports of shear

strengths at failure. These values at specimen failure are not representative

of true shear strength of unidirectional boron-aluminum laminates. For this
2-27
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reason, shear strengths of 0 and %—rad laminates are reported in Figure 2-28 for
shear strain levels of 10,000 um/m.

Both room and elevated temperature tests were conducted on i-% rad laminates.
Photographs of these specimen after test are shown in Figure 2-35., Shear stress-
strain response of this laminate is shown in Figure 2-36. Because shear character-
istics of this laminate are controlled primarily by the filaments, the stress-

strain curve is nearly linear,

e il
FILAMENT ORIENTATION = + /4 rad
BORON ALUMINUM RAIL SHEAR SPECIMENS AFTER TEST AT 589K

2-28

Figure 2-35
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2.1.2.5 Diagonal Teunsion - The purpose of this test was to determine the

effect of outer ply filament orientation and bending stresses caused by buckling

1 . . .
on the shear strength and stiffness of i-z rad symmetric, boron-aluminum laminates.

Results from these tests are summarized in Figure 2-37. As shown, filament orien-

tation affects shear strength but has little effect on stiffness. Also, bending
stresses appear to reduce ultimate shear strength; this can be observed by com—-

paring results from these tests with rail shear tests of Section 2.1.2.4.

2-29
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TEST ULTIMATE ULTIMATE INITIAL
specmeN | TemperaTume | NuMBER SHEAR SHEAR M;H EAR OUTER PLY
KO OF PLIES STRENGTH STRAIN DULUS FILAMENT
ORIENTATION
oK oF WNmE | Ks! um/m GN/m? | 106 psI
1 RT | RT 4 2280 3.1 3940 75.8 11.0 @
2 RT | RT 4 289.0 12.0 4220 74.5 10.8 @
3 R.T R.T 8 250.0 3.3 319 75.8 11.0 D
4 589 600 4 1543 2.4 > 2830 51.6 7.5 @
(DPARALLEL T0 LOAD
(2) PERPENDICULAR TO LOAD
SHEAR PROPERTIES OF * »/4 rad 'BORON ALUMINUM LAMINATES
DIAGONAL TENSION TEST METHOD Figure 2-37
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Typical diagonal tension test specimens, shown in Figure 2-38, are 17.8 cm
(7.0 in.) square including tabs for joining to picture frame test fixture. The
test zone inside end tabs is approximately 10 cm (4.0 in.) square. A six mil
aluminum ply is adhesively bonded to each side of the end tabs to prevent damage
from test fixture, Back-to-back strain rosettes were bonded to the specimen in two
locations as shown in Figure 2-38, 1In addition, deflectometers were attached to the

specimen adjacent to the strain gages for purposes of recording lateral deflection

due to buckling,

SPECIMEN 1 ; SPECIMEN 2

ROOM TEMPERATURE

BORON ALUMINUM DIAGONAL TENSION SPECIMENS PRIOR TO TEST Fiiare 4.8
igure 2—
Two types of failure modes are possible depending on outer ply filament ori-

entation as shown in Figures 2-39 and 2-40. 1In Figure 2-39, outer ply filaments
are oriented parallel to applied load., This specimen failed in shear along the
edges of specimen., Outer ply filaments are oriented perpendicular to load for
specimen shown in Figure 2-40, This is the preferred orientation because the
specimen possesses maximum flexural stiffness to resist buckling caused by internal
compressive loads acting perpendicular to applied loads. Deflectometer readings
showed that the preferred orientation specimen (Figure 2-40) experienced smaller
lateral deflections than the specimen shown in Figure 2-39., As a result, bending
stresses were lower which permitted that specimen to carry higher shear loads
before failure (Reference Figure 2-37).
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FILAMENT ORIENTATION PARALLEL TO LOAD

BORON ALUMINUM DIAGONAL TENSION SPECIMENS AFTER TEST AT ROOM TEMPERATURE
Figure 2-39

FILAMENT ORIENTATION PERPENDICULAR TO LOAD

BORON ALUMINUM DIAGONAL TENSION SPECIMENS AFTER TEST AT ROOM TEMPERFA_TURIZE it
igure 2—
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In the compression panel, both preferred and unpreferred filament orientations
are present in the skin at opposite sides of the centerline stringer. For this
reason, ultimate shear strengths obtained from diagonal tension tests are con-
servatively based on unpreferred filament orientation,

A typical shear stress-strain curve for a diagonal tension specimen is shown
in Figure 2-41, Although this curve was obtained from a specimen having pre-
ferred outer ply filament orientation, the response is similar over a majority

of the curve to specimen with unpreferred outer ply filament orientation.

300
40— ROOM TEMPERATURE /
OUTER PLY FILAMENTS ORIENTED PERPENDICULAR TO LOAD /
250
30
200 ra
Z
1
u? o
o = 150
ool =
=
o
=
[+
=< 100
% /
10— /
50
ol— 0
0 1000 2000 3000 4000 5000

SHEAR STRAIN, v, ~um/m

TYPICAL SHEAR STRESS—STRAIN RESPONSE OF + n/4 rad LAMINATE FROM

DIAGONAL TENSION SPECIMEN
Figure 2-41

2.1.2.6 Crippling - Crippling strength of a unidirectional boron-aluminum
stringer having several different thicknesses was determined by test at room

temperature and 589°K (600°F). The stringer hat shape selected, shown in Figure

2-32
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2-42, was used on all stringers of the 1,83 m (72 inch) long by 1.22 m (48 inch)
wide compression panel, These stringers have constant shape but are tapered in
thickness by adding or removing plies to carry the variable load along their
length, The range of stringer thicknesses tested (6 ply to 19 ply) was chosen

to cover the range in thickness required for loads expected in the seven stringers

on the compression panel,

NUMBER | T A B C R1 R2
PLIES {cm) (cm) (cm) {cm) {cm) (cm)
6 217 | 198 )| 87 | 127 | 190
10 % | o211 | L0 | L7 | 137 | 190
14 267 | 206 | 140 | 114 | 127 | 14
19 361 | 209 | 140 | 116 | 127 | L1
5 097 | 2.2 97 | 107 | 127 | 150
17 328 | 249 | 114 { 100 | 127 | LI2
R
e

Rz\ | Ry _B_i
1
| !

(TYP)

CRIPPLING SPECIMEN CONFIGURATION

FOR 5.6 MIL BORON/ALUMINUM HAT SECTION STRINGERS Ficure 242
igure 2—

Results from crippling tests are summarized in Figure 2-43 and graphically
presented in Figure 2-44. Crippling strengths defined by curves shown in Figure .

2-44 are considered to be average values. The 10 ply specimens contained defective
2-33
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areas prior to testing and the results are treated accordingly. Crippling

strength at 589°K (600°F) is about 55 percent of the room temperature strength.

CRIPPLING LOAD, P, - KIPS

TEST INTTIAL CRIPPLING CRIPPLING
NUWBER | FILAMENT
OF PLIES |__TEMPERATURE BUCKLING LOAD! | . LOAD ZSTRESS VOLUNE %
oK °F kN KIPSI kN KIPS | 'MN/mw Ksl
§ RT RT 21.8 4.9 84.1 18.9 421.0 | 620 253
§ 589 600 @ ® | 382 8.6 1943 | 28.2 45.3
10 RT RT 819 184 | 1472 3.1 080 | 593 44,6
10 589 600 1 1 64.1 14.4 1845 | 26.8 .6
14 R.T RT | 2420 545 | 266.5 59.9 571.0 | 828 45.0
14 589 600 113.0 254 181.0 10.7 385.0 | 559 45.0
19 R.T R.T @ ) 489.0 | 110.0 §00.0 | 116.0 14.9
19 1589 600 254.5 57.2 267.0 60.0 4330 | 629 44.9
5 RT RT 18.2 a1 | 121 16.2 4420 | 64l
Y RT RT (D (D | 80 | 1053 | 8550 | 1240
(1) INITIAL BUCKLING LOAD NOT DETECTED
(2) FOUR, O rad: B/AL PLIES AND ONE TITANIUM PLY AT MIDPLANE
(3) SIXTEEN, 0 rad B/AL PLIES AND ONE TITANIUM PLY AT MIDPLANE
CRIPPLING STRENGTH OF UNIDIRECTIONAL BORON ALUMINUM
Hat Section Stringers Figure 2-43
500 +
1201~ 4.15 cm (1.63 IN.)
500.—-——-———— - . . Q
1001~ 118 o /
so0———+=—— (4.64 IN.)
80— /<
= 0 p ~ROOM TEMPERATURE
60| LR
ol 20
oL (] e
3 b 8 10 12 14 16 18 20

NUMBER OF PLIES
SELECTED HAT STRINGER CRIPPLING LOAD CAPABILITY

AT ROOM TEMPERATURE AND 589K (6000F) Figure 2—44
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A typical crippling specimen with ends potted ready for test is shown in
Figure 2-45. Potting was required particularly for the thick specimens to pre-
vent brooming of specimen ends. Glasrock castable ceramic was the potting material
used for some room temperature specimens and all 589°K (600°F) specimens. The pot-

ting material was retained by a steel frame as shown in Figure 2-45.

TYPICAL BORON ALUMINUM CRIPPLING SPECIMEN POTTED

WITHIN RETAINING FIXTURE Figore 2-45

Failure modes typical of six and 19 ply specimens are shown in Figures 2-46
and 2-47 respectively. It was noted before testing that some specimens had no
eutectic bonds in free flange radii probably due to insufficient early processing
hand-forming pressure or bonding pressure in these areas. Evidence of these poor
bonds is shown by type of failure revealed in Figure 2-47. Stringers used in the
compression panel were formed by a mechanical process which provides much higher
forming pressures to insure inter-ply contact for bonding; therefore, it is ex—
pected that compression panel stringers have higher crippling strengths than those
determined in the element test program.

The compression panel stringers contain titanium interleaves to improve in-
plane shear and bearing strengths of the stringers. To determine the effect of
titanium interleaves on crippling strength, a five ply and a seventeen ply crippl-

ing specimen were tested at room temperature. Both specimens contained only one
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TEMPERATURE = 5899K (600°F)
TYPICAL 6 PLY CRIPPLING SPECIMEN AFTER TEST

EUTECTIC
BONDLINE
DELAMINATION

EUTECTIC
BONDLINE
DELAMINATION

TEMPERATURE = 589°K (600°F)
TYPICAL 19 PLY CRIPPLING SPECIMEN AFTER TEST
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Figure 2-46

Figure 2-47
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titanium ply located at the midplane. Results show that the titanium

ply hag little affect on room temperature crippling strength. At elevated temp-
eratures (589°K), titanium interleaves are expected to significantly improve
crippling strength because strength and stiffness of titanium is not affected by
temperature to the same extent as the matrix dependent transverse properties of
boron-aluminum. Transverse properties of boron-aluminum influence crippling
strength as evidenced by longitudinal splitting in failed specimens (Figures 2-46
and 2-47). These longitudinal splits are significantly reduced in the five ply

specimen containing a titanium interleaf as shown in Figure 2-48,

2 PLY 09 B/AL,Ti, 2 PLY 0° B/AL AT R.T.

8 PLY 0° B/AL, Ti, 8 PLY 0° B/AL AT R.T.
ROOM TEMPERATURE

BORON ALUMINUM CRIPPLING SPECIMENS WITH TITANIUM

INTERLEAF AFTER TEST Figure 2—48

A few specimens were instrumented with strain gages to record distribution of
load within the specimen and to determine onset of free flange buckling. A
6 ply unidirectional boron-aluminum crippling specimen containing several strain
gages was tested at room temperature. Results are shown in Figure 2-49., The
free flange was observed to buckle at 38.2 kI (8600 1bs) which agrees well with
divergence of back to back strain gages 1 and 2. These two gages also indicate
that after free flange buckling, no additional load is carried by that portion
of flange. Gages 3 and 4 show that the corner radii region has not buckled and
continues to accept additional load until overall crippling occurs.
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A 19 ply crippling specimen containing strain gages was tested at 589°K
(600°F) and stress-strain response is shown in Figure 2-50. These results show
that the specimen was uniformly loaded. The initial modulus obtained from this
specimen is about 179 GN/m2 (26.0 x 106 PSI) which is about B80% of the room

temperature stiffness,
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2.1.2.7 Interlaminar Shear - The objective of this test was to determine

interlaminar shear strength of eutectic bonded, unidirectional boron-aluminum
laminates at room and elevated temperature. Five specimens were tested at room
temperature and five were tested at 589°K (600°F) after a 30 minute exposure to

temperature. Results from these tests are summarized in Figure 2-51.

rEsT INCIPIENT A\ SHEAR DEFLECTION
TENPERATURE SHEAR STRENGTHAT | AT ULTIMATE
STRENGTH | ULTIMATE LOAD LOAD
o o | mN/m? | KSI | MN/m@ [ ks mm in
RT | RT | 27 | 415 626 | 100 164 | 0825
sg9 | eo0 | 131 |19 | a4 | Al Al A

/I DETERMINED AT POINT WHERE LOAD ~ DEFLECTION CURVE BECOMES NON-LINEAR
/2\ SHEAR STRENGTH AT DEFLECTION OF 1.64 mm

/A\ TEST DISCONTINUED PRIOR TO SPECIMEN FAILURE

AVERAGE INTERLAMINAR SHEAR STRENGTH OF BORON AL UMINUM
Figure 251

Each specimen was 2.54 cm long, .762 cm wide and 24 plies thick., Three-
point loading was used to bend the specimens and cause interlaminar shear stresses.
A defiectometer recorded deflection as a function of applied load for each specimen.
Typical load-deflection curves obtained at room temperature and 589°K (600°F) are
shown in Figures 2-52 and 2-53 respectively. Incipient shear strength is deter-
mined at the load where the load-deflection curve becomes non-linear,

Specimens tested at room temperature experienced predoﬁinantly tensile
failures rather than shear failures as shown in Figure 2-54. The maximum load
carried by these specimen was used to calculate shear strength at specimen failure
reported in Figure 2-51, The average deflection at failure for room temperature
specimen was .164 cm (.0645 in.).

Specimens tested at 589°K (600°F) experienced large deflections without
failure as shown in Figure 2-54, Shear strength at specimen failure, therefore,

was recorded at the same deflection used for room temperature specimen (.164 cm).

2-39

MCDONNELL DOUGLAS ASTROMAUTICS COMPANY - EASTYT



BORON ALUMINUM FOR REPORT MDC E0825

SPACE SHUTTLE COMPONENTS FINAL REPORT 30 JULY 1973
3500
3000 o \_
ULTIMATE
600~ p / SHEAR LOAD
2500 >
5004— l / '
o 2000
_ll. M- = P
= 1500
e |
g w0} I N INCIPIENT SHEAR I
1000 LOAD P/2 P/?
2} /
100 5"°y
o= % 04 0.8 12 16 20 2.4
mm
L | | I | I 1 ] L]
0 0.1 007 003 004 005 005 007 008  0.09

'DEFLECTION - IN.
TYPICAL LOAD-DEFLECTION OF INTERLAMINAR SHEAR SPECIMEN
AT ROOM TEMPERATURE

o0 e Figure 2- 52
1250
250 l—
1000 I
200 / P
750 ;
o= T
500 ! PR P/2
—
100 xlNCIPtENT SHEAR
LOAD
P
ol o
0 0.2 0.4 0.6 0.8 1.0 1,2 14 16 18 2.0
mm
L 1 | ] | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.0 0.07 0.08

DEFLECTION - IN.

TYPICAL LOAD - DEFLECTION OF INTERLAMINAR SHEAR SPECIMEN AT 5890K

Figure 2-53
2--40

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST



™

(=]

L

BORON ALUMINUM FOR REPORT MDC E0825
SPACE SHUTTLE COMPONENTS FINAL REPORT 30 JULY 1973

TENSILE
FAILURE
PREDOMINATE

ROOM TEMPERATURE

NO VISIBLE
FRACTURE

TEMPERATURE = 589°K (600°F)

TYPICAL BORON ALUMINUM INTERLAMINAR SHEAR SPECIMEN AFTER TEST
Figure 2-54
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2.1,2.8 Compression and Tension of i-% rad Laminates - The objective of this

1
test was to determine ultimate strength and stress-strain response of i_z rad

laminates subjected to both compressive and tensile loads. Sandwich beam specimens
were used for compressive tests and both sandwich beam and tensile coupons were
used for tensile tests. Results are summarized in Figure 2-55. Strength and
stiffness values shown using sandwich beam specimens are the average of five tests

while values shown for tensile coupon are the average of three tests.

TEST ULTIMATE ULTIMATE INITIAL FILAMENT
TYPE TEST M;E?:ED TEMPERATURE STRENGTH STRAIN MODULUS VOLUME
" ] % |mal | ks | "™ [onm? |1fesi|
COMPRESSION ;| BEAM R.T. R.T. 214.5 | 311 17,200 108.3 15.7 4.1
COMPRESSION | BEAM 589 500 60.0 8.7 A & 83.5 12.4 37.0
TENSION BEAM R.T. R.T. 237.5 | 345 17,700 92,4 13.4 46.3
TENSION COUPON | R.T. R.T. 180.5 | 26.2 27,000 91,0 13.2 -

AFAILURE DCCURRED IN B/AL LAMIKATE TO CORE BONDLINE
ASTRAIN GAGES FAILED PRIOR TO SPECIMEN FAILURES.

AVERAGE TENSILE AND COMPRESSIVE PROPERTIES OF + /4 rad

BORON ALUMINUM LAMINATES
‘ Figure 2—- 55

Sandwich beam specimens used for compressive tests, shown in Figure 2-56,
are 40.7 cm long, 2.54 c¢m wide, and 3.81 cm high. The compressive faceplate is
and eight ply, i-% rad laminate, Sandwich beam specimens used for tensile tests
were identical to those used for compressive tests with the exception that the
tensile faceplate was a four ply, i_% rad laminate. The four ply tensile coupon
was 2.54 cm wide and 20.3 cm long. They were made from the same laminate used to
make the tensile faceplate on sandwich beam specimens.

Typical compressive stress-strain curves at room temperature and 589°K
(600°F) are shown in Figures 2-57 and 2-58 respectively. Because these curves
are nonlinear over a majority of the range of interest, initial modulus values
shown in Figure 2-55 are applicable only for a very small portion of the curve.

Two sandwich beam gpecmines for obtalning tensile properties were cyclically
loaded and a typical stress-strain response is shown in Figure 2-539. The material
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displayed limited hysteresis and the stress-strain curve was not affected by the
cyclic load.

1 ; ; : . .
At i-z rad laminate loaded in either tension or compression experiences

large deformations due to shear forces acting on the matrix material. As a
result, Poisson's ratio is large and continually changes as shown in Figure 2-60.
Evidence of this effect is wvisible in sandwich beam test specimens shown in

Figure 2-61.

713-3-A
73-3-B
73-3-C
713-3-D

73-3-E

45-5-) |

+ /4 rad LAMINATES
TEMPERATURE = 589°K (600°F)
TYPICAL BORON ALUMINUM SANDWICH BEAM SPECIMEN BEFORE TEST

Figure 2— 56
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POISSON'S RATIO

1.20

1.0
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0.50
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LONGITUDINAL STRAIN, e: = m/m

TYPICAL POISSON'S RATIO FOR % /4 rad LAMINATES IN COMPRESSION
ROOM TEMPERATURE

Figure 2- 0
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TEMPERATURE = 589°K (600°F)
COMPRESSIVE LOAD IN LAMINATE

EFFECTS OF HIGH POISSON'S RATIO FOR + /4 rad LAMINATES SHOWN IN
SPECIMEN AFTER TEST

Figure 2— 61
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2,2 Phase 1I Design Studies

In Phase II, components and assemblies representing full scale hardware were
designed and analyzed. These included a 1.22 m x 1.83 m (48 inch x 72 inch) Com-
pression Panel, a thrust structure beam of truss design, a thrust structure beam
of shear web design, a Component Panel Test Assembly and a Stringer Test Assembly.
Detail production drawings were prepared for fabrication of the Compression Panel,
including supports for testing and a splice joint fitting design at the load re-
action end representative of a typical production splice joint. In addition, two
structural assemblies were selected for fabrication and testing:; a stringer assemb-
ly identical to outboard stringer on compression panel and a component panel re-
presentative of the first bay of the full scale Compression Panel, Design de-
tails and test results of the Stringer Assembly and Component Panel are given in
Section 2.5; design and analysis of the Compression Panel, thrust structure truss
beam and shear web beam are presented in the following sections,

2,2,1 Compression Panel Design and Strength Analysis - The selected compression

panel design, shown in Figure 2-62 resulted from conceptual studies of several
candidate designs as discussed in Appendix A. The selected panel configuration
consists of seven unidirectional tapered stringers and a i-% rad (+45°) tapered

skin supported laterally by four steel frames. The panel was designed to carry a
concentrated ultimate compression load of 1555 kN (350,000 lbs) applied at ome end
reacted by a distributed load at the opposite end while at a temperature of 589°K
(600°F). Peaking at the distributed load end must not exceed a uniformly distribut-
ed load by more than 30% as illustrated in Figure 2-63.

The structural adequacy of the boron-aluminum panel structure to sustain the
design ultimate conditions was analytically verified during Phase II; in addition,
the predicted external load distribution which is well within the 30% peaking re-
quirement was verified by the component panel test (Section 2,5.2). Minimum cal-

culated margins of safety for primary stringer and skin compoments are given below.

DESIGHN DESIGN CRITICAL FAILURE
ITEM CONDITION TEMP ., LOCATION MODE M.G5.
Boron-Alumimum Ultimate 589°K  X=61.0 cm Bending and .02
Hat Stringer (0°, 11 Ply) Load Y=54.8 em Axial Load
Boron=Aluminum ,
Skin (+45°, 48 Ply) Ultimate 589°K X=9.6 em In-Plane .26
Load ¥=9.9 em Shear Strength

" PRBCEDING PAGE BLANK NOT FILMED
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P = 1555 kN (350,000 LBS)

b= 0.61lm (24 N

b
wy WHERE: 2§ wydy = 1955 KN (350,000 LBS)

- P
AND w €13 |—
*MAX b

COMPRESSION PANEL EXTERNAL LOADS
Figure 2- 63
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Further design details, internal loads distribution, methods ¢f analysis,
selected strength analysis and compression panel weights are presented in the
following sections.

2.2.1.1 Compression Panel Structural Description - The selected configuration

(Figure 2-62) consists of seven unidirectional tapered thickness stringers, a
j-% rad (+45°) tapered skin, a steel thrust plate, and four steel frames to pro-
vide lateral support. Titanium interleaves are incorporated in both the skin and
stringers to increase bearing allowables and improve transverse tension and shear
properties,

The unidirectional stringers are designed primarily to carry uniaxial com-
pressive loads. Stringer thickness and titanium interleaf requirements are tailor-
ed to meet the predicted axial loads and shear loads given in Section 2.2.1.2.4,
Unidirectional boron-aluminum monolayer and titanium interleaf stacking sequence
for the stringers is shown in Figure 2-64,

The i-% rad (+45°) skin is designed primarily for shear resulting from the
distribution of the concentrated compressive load applied to center line stringer
to seven approximately equal stringer reaction loads over a 3 bay length. The
i-% rad (+45°) laminate orientation was chosen to achieve maximum skin shear
strength., Skin thickness tapering is based on internal predicted shear flows
(see Section 2,2.1.3.4) and allowable laminate shear strength., All changes in
skin thickness are accomplished in 4 ply increments to maintain laminate symmetry.
Skin design is resistant to shear buckling at ultimate loads in all areas. Ply
layup for i:%—rad (+45°) skin with titanium interleaves is shown in Figure 2-65.

For design purposes, the central concentrated load was assumed to be applied
over an area 11.42 cm (4.5 in.} x 19.7 em (7.75 in,) in which all load is trans-
ferred in bearing to the center line stringer, thrust plate and local skin area.
Figure 2-66 illustrates the load introduction end of the compression panel. This
load introduction design was verified by the component panel test article (Section
2.5.2) which was loaded to 115% of design ultimate load at 589°K (600°F) without
failure,.

Steel fittings at the load reaction end of panel simulate an actual design
of a production splice joint with capability for transition from composite to con-
ventional materials. The joint and panel end design are shown in Figure 2-67.
Stringers contain additional titanium interleaves to provide bearing strength for

load transfer by mechanical fasteners. These fittings extend beyond the panel

skin and stringer to positively react the compression load at the fittings. Each
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/\ | LOAD BLOCK (REF)

11,42 cm] - ‘ N : THRUST PLATE STEEL

SKIN:% 7/4 rad (+459)

BORON-ALUMINUN ~ _
ITH TITANIUM FOIL INTERLEAVES

e

(1.75 in.) ~

I

»

STRINGER O rad BORON-ALUMINUM
WITH TITANIUM FOIL INTERLEAVES

MACHINED FLAT SQUARE &
PARALLEL TO WITHIN 0.0051 cm/em
(0.002 in/in}

LOAD INTRODUCTION END OF BORON — ALUMINUM COMPRESSION PANEL
(Frame Omitted for Clarity)

Figure 2- 66
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STRINGER O rad BORON-ALUMINUM
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CLOSEOUT FITTING
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Figure 2-67
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fitting was designed with two lugs providing tension capability across the joint
equal to 507 of compression capability., Since the compression panel will not be

tested in tension, lugs were not machined on fittings to reduce costs.
2,2.1.2 Methods and Approaches Used for Compression Panel Analysis and

Joint Strengths - This section discusses the methods of analysis incorporated in

computer programs which were employed in the analysis and evaluation of various
thrust structure concepts, the Stringer Test Assembly, the Component Panel Assembly
and the Compression Panel, In addition, the analytical procedure developed for
predicting mechanical joint strength of boron~aluminum containing titanium inter—
leaves is discussed.

2.2,1.2.1 Applicable Computer Programs — Due to the internal and external

redundancy of the compression panel, the use of tapered stringers and skin, and
the analytical complexity of laminated composites, four computer programs were
used extensively:

Computer Aided Structural Design (CASD)

Laminate Strength and Stiffness Properties

Ultimate Strength of Laminated Composites

Orthotropic Plate Buckling

Computer Aided Structural Design (CASD) Program - CASD was used to determine

internal loads distribution in each of the structures investigated and to size
stringers and skin used in component and compression panel. The step by step
sizing process is discussed in Section 2,2,1.3.1. This linear finite element pro-
gram provides the capability to rapidly size and analyze complex structures sub-
jected to multiple design constraints. The member sizing process can consider
multiple conditions of ultimate strength and stiffness requirements. Member gages
are computed which satisfy these conditions. However, the program can be used to
determine loads based on given section properties and to check if allowable
stresses are exceeded, Structure is modeled with single or two element bar members
and shear panels interconnected at nmodal points. Support conditions can be either
fully fixed, pinned, or combinations thereof. Applied loading can be in the form
of concentrated forces and moments or distributed pressures and temperatures,

A powerful design analysis feature is the ability to define many individual
structural medules which can then be assembled into a single structure, Changes

can be made to a module without affecting the entire structural model,
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Laminate Strength and Stiffness Properties Propgram - This program was used in

trade studies to evaluate candidate compression panel skin configurations for
maximum strength and to obtain laminate stiffness properties for use in buckling
analyses. Using elastic moduli for unidirectional lamina defined in terms of the
principal lamina axes, stiffness properties of the midplane symmetric laminate are

developed using lamination theory as illustrated below:

n
A; 4] =k£l Q0 (y = Py p)
n
_ 1 — 3 _.3
L] =3 oy Qe B ™ hey)
where [Aij] = laminate in-plane stiffness matrix
EDij] = laminate flexural stiffness matrix
n = total number of plies in laminate
k = lamina number
h = distance from reference surface to ply surface
[6ij] = stiffness of the individual lamina referenced to the

laminate axes system

Using the above laminate in-plane stiffness matrix and a particular applied state
of stress, the program calculates the corresponding laminate strains. These strain
values are then transformed into individual lamina strains and compared to allow-
able lamina strains based on ultimate strain failure .criteria.

The laminate flexural stiffness matrix is used in determining compression and
shear buckling strength of flat composite plates,

Ultimate Strength of Laminated Composites Program - The ultimate strength

program was used to determine the nonlinear strength and stiffness response of the
i_% rad QtéS“) compression panel skin under various combinations of biaxial load-
ing and shear. Complex states of stress in skin vary from biaxial compression and
shear at the load introduction region to biaxial tension, compression and shear
at the load reaction end. Strength and stiffness data obtained from this program
were used in the finite element analysis of compression panel employing CASD.

The program uses basic lamina and laminate constitutive relations as well
as lamina stress-strain curves to determine stress-strain response of the laminate
under biaxial in-plane loading. Nonlinear lamina material behavior is included by
incrementally applying average laminate stresses and utilizing a simple Euler-type
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integration procedure,
Initially, a stress state is applied to the laminate, and using the intial

1 . . . : .
. The first increment of laminate strains is

laminate compliance matrix, [Aij] -
calculated assuming the laminate behaves linearly over the applied stress incre-

ment, This statement expressed mathematically in matrix form becomes:

-1
[AE:I n+l = [:Aj_j] n [AG] bl CTTTTTTTTTTTTTTTTTTTTTTTTTT (a)

The increment of laminate strains, Ae, is then added to any previous strains

to determine the current total laminate strain:

I:E]n+l = [E]n + [AE] n+1

For the first increment [E]l = 0.

Using basic strain transformation equations, lamina strains in the prinecipal
lamina axis system are then calculated and corresponding lamina stiffnesses
[Qii]n are obtained using the tangent moduli obtained from the empirical stress—
strain data at the nth value of lamina strain.

The laminate stiffness matrix [Aij] for the (n+1)th stress increment is then
calculated using the nth values of the Q's. The laminate compliance matrix
[Aij]-l is utilized in Equation (a) to determine the laminate strains which result
from the next load increment of AUX, Acy, and/or ATXy. In this manner, the total
laminate stress-strain curve to ultimate strain is determined by the successive
solution of a number of linear problems. Failure was assumed to occur when any of
the ultimate lamina strain allowables are exceeded.

Orthotropic Plate Buckling Program — This computer program provides an ac-

ﬁurate, fast and useful method for determining the elastic buckling strength of
orthotropic rectangular laminated composite plates. It computes the critical
elastic buckling strength of orthotropic rectangular plates subjected to combined
in-plane axial and shear loads. Edge conditions can be fully fixed, simply
supported, or combinations thereof. The methed of analysis 1s applicable to
orthotropic flat plates with uniform thickness and arbitrary ply orientations.

Tt was used to determine the buckling strength of compression panel skin under
biaxial compression and shear as shown in Figure 2-68. The margin of safety in

buckling for this loading condition is,
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and,
2
Fx = FXCI(FXyCI X FX) -1 + Jl + 4 [(Fxcr ) (ny )];1(Réf. 5)
cr
2 Fxcr Fxy nycr Fx
where: Fx = applied compressive stress in x direction
Fy = applied compressive stress in y direction
Fxy = applied shear stress
Fxcr = allowable biaxial compressive buckling stress
nycr = allowable shear buckling stress
fkrr = allowable compressive buckling stress under the

combined applied stresses
Allowable shear buckling stress for a simply supported plate with large aspect
ratio is defined by,

2
1.2
(=) \{922 (D, + 2D ) [11.7 + .5320 + .9389]

nycr - T b

where: plate thickness

plate length
plate width

o o por
I

13 plate flexural stiffnesses

D
12 66

Allowable biaxial compressive buckling stress for a simply supported plate with

large aspect ratio is defined by,

2 2
I 4 b 22 b 4
Fxcr = tbz Dllm (a) + 2 (DlZ + 2D66) mn (a) + D22n ](Ref. 5)
2 b2 Fy, 2 J
m (a) + (Fx) n min.
where: m = number of half sine waves in x direction

o] number of half sine waves in y direction
Buckling equation to be minimized with respect to

m, n, =1, 2, =——————-

2.2.1.2.2 Joint Allowables for Stringers with Titanium Interleaves - The

unidirectional, hat-section stringer is attached to the skin at the free flanges
by a single row of mechanical fasteners in each flange, Shear load from the skin

is introduced to the stringer by bearing at the fasteners and then distributed to
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f—— o ——

STATE OF STRESS IN SKIN FOR BUCKLING ANALYSIS oo 268
igure Z-

the stringer cross section through shear as shown in Figure 2-69. To provide
adequate shear and bearing strength, titanium interleaves were added to the uni-
directional boron-aluminum plies.

The method of analysis developed for the boron-aluminum with titanium Inter-
leaves is a combination of two methods presented in the literature for resin matrix
composites with metallic plies. The method of analysis presented in Reference 5
assumes that the full bearing strength of the metallic ply may be combined with
the full joint allowable of the composite material. However, a second method of
analysis discussed in References 6 and 7 reduces the bearing allowable of the
metallic‘ply to account for buckling of these plies at the fastener,

The method developed for boron-aluminum with titanlum interleaves employs
a compromise between the two methods for resin matrix composites, Accordingly,

a bearing allowable of 862 MN/m2 (125,000 psi) at 589°K was chosen for the
titanium plies. This value is midway between the full titanium bearing strength
of 1310 MN/m2 (150,000 psi) and a ply buckling strength of 414 MN/m2 (60,000 psi)
predicted on the basis that the beoron-aluminum plies provide an elastic foundation

to the titanium ply.
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Bearing strength of the joint (PBR) is the sum of the bearing strength of

the boron-aluminum plies and the modified bearing strength of the titanium inter-

leaves,
Fpr = Fpg (D) (e, + Fpp () (Dt
ti 0
where @ FBRti = Modified bearing strength of titanium interleaf
= 862 MN/m® (125000 PSI) at 589°K (600°F)
FBR = Bearing strength of 0° boron-aluminum
o

386 MN/mZ (56000 PSI) at 589°K (600°F)
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N = Number of titanium interleaves
tti = Thickness of individual titanium interleaf
t, = Thickness of indiﬁidual 0° boron-agluminum ply

= (.0183 cm (0.0072 in.)
D = Fastener hole diameter, cm (in)

M = Number of 56£on—aluminum plies

Joint strength is a function of both bearing and shear strength of the string-
er flange. Shear strength (Psu) is the sum of the individual shear strengths of

the boron-aluminum plies and the titanium interleaves as defined by the following

equation:
Pu= [Fgy (eD) ) (e )+ F (D) () (T )]
ti : o)
where? Fsu = Ultimate shear strength of titanium
i
= 414 MN/m® (60000 PSI) at 589°K (600°F)
FSu = Ultimate shear strength of 0° boron-aluminum
0
= 32.3 MY/n> (4680 PSI) at 589°K (600°F)
e = Center~line spacing of fasteners, cm (in)

The ultimate shear strength of 0° boron-aluminum employed in this equation was
obtained by reducing average test values at 589°K (600°F) by 10 percent,

The joint allowable (Pall) is the minimum of the single shear strength (Psu)
and the bearing strength (PBR)'

Pall = Min (Psu, PBR)

This formulation was employed to develop the design curve shown in Figure 2-69
where the joint allowable for .635 cm (.25 in.) fasteners spaced at 2.92 cm
(1,15 in.) is expressed as a function of number of boron-aluminum plies and
titanium interleaves. A significant improvement inyjoint strength is provided by
the addition of one or more titanium interleaves.

2.2.1.3 Compression Panel Internal and External Loads Analysis - Analysis

of the B/Al skin~stringer Compression Panel required adapting a lihear, finite
element method of analysis to a structure exhibiting, in part, highly nonlinear

material behavior. A sizing procedure was developed to obtain the minimum weight
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séructure capable of transforming a concentrated 1555 kN (350,000 1b) load at one

end inte a distributed reaction which peaks less than 30% at the othgr end.
Predicted loads distribution for the panel sized by this technigque is given in
Section 2.2.1.3.4. Verification of the method of analysis for predicting loads
was accomplished by comparing test data and predicted loads for the component
panel as discussed in Section 2.2.1.3.5.

Distribution of shear flow between legs of hat section stringers was deter-
mined through a detailed finite element model of a portion of the panel using the
NASTRAN program. Details of this investigation are discussed in Section 2.2.1.3.6.

2.2.1.3.1 Finite Element Model - A linear finite element model was used to

idealize the skin-stringer panel shown in Figure 2~62, Unidirectional boron-
aluminum stringers and titanium frames were assumed to carry axial loads only, and
were modeled by axial bar elements. The jﬁ% rad (+45°) boron-aluminum skin was
modeled by axial bar elements and shear panel elements., Axlal bar elements
represented the longitudinal and transverse tensile and compressive capability of
the skin while shear pamel elements simulated shear behavior. Axial bar and shear
panel elements were also used to idealize the thrust plate;

A fine grid of elements was required in the model to determine the state of
combined shear and biaxial tensile and compressive stresses in the skin. Also,

a fine grid of both bar and shear panel elements was necessary to determine the
variation of this complex state of stress in a given bay. Similarly, a fine grid
of elements was required to accurately predict load variation in stringers, thrust
plate, and frames.

The resulting finite element model jis illustrated in Figure 2-70, Shown are
typical element grids modeling portions of the panel bounded by two adjacent
frames and two adjacent stringers. The model of the entire panel utilizes 625
joints, 1200 bars, and 576 shear panels. Grid spacing was chosen to provide an
accurate description of expected variation in internal loads, with the smallest
spacing occurring near the concentrated load end,

2.2.1.3.2 Marerial Properties - Material properties assumed for the frames,

stringers, thrust plate, and skin are given in Figure 2~71. Estimated mechanical
properties at 589°K (600°F) were employed because analysis of the compression panel
occurred before results from element test program were available. In Figure 2-72?
the allowable column stress, as a function of cross secticnal area, is presénted
for hat section unidirectional boron-aluminum stringers, and includes the inter-
action of crippling and column failure modes., Estimated 589°K (600°F) lower

bound crippling curves were employed to develop these data.
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Interaction of biaxial tensile and compressive stresses with shear stresses
for +45° boron aluminum skin is shown in Figure 2-73 . Allowable shear strength
of 0,110 GN/m2 (16.0 ksi) was chosen for the skin since for shear stresses below
this value, Figure 2-73 indicates 1little or no interaction with axial stresses.
However, Figure 2-73 does indicate that the ratio of biaxial stresses has an
important influence on the tensile and compressive behavior of the skin. Treatment

of this nonlinear biaxial behavior requires special consideration and is described
in the following secrtion.
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Figure 2-73

2.2,1.3.3 B8izing Procedure - The finite element model described in Section

2.2.1.3.1 was used to size the skin, stringers, and frames. Use of the MDAC-E
computer program CASD allowed a rapld determination of member sizes in a

minimum weight structure for the design conditions. A four step sizing procedure
was used in the concept selection studies described in Appendix A. Because results
from that study could be applied to the final sizing operation for the panel, a
three step sizing procedure was only required as outlined in Figure 2-74. This
procedure incorporated strength and stiffness constraints, minimum gage considera-
tions, and nonlinear material behavior., 1In each step, the panel was supported at
the applied load end and a uniform load imposed at the distributed load end to
force compliance with the 30% peaking constraint. .The actual support condition

of zero deflection at the distributed load end was simulated by imposing a stiffness

constraint requiring each stringer to deflect an equal amount.
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In step one, the panel was sized for strength only to obtain the minimum
weight structure for the condition of uniform loading at the distributed load end.
Member strengths and stiffnesses employed in the model were based on estimated
internal loads distribution obtained from concept selection studies (Appendix A).
The centerline deflection of the panel obtained in this manner became the deflection
constraint which was imposed on all stringers in subsequent sizing steps.

Step two involved resizing the panel to determine the minimum weight structure
for the conditions of uniform loading and uniform deflection at the distributed
load end. The deflection constraint imposed was the centerline deflection from
step one. Reviéed allowables and moduli were employed for each element in the
model based on internal loads and member gages determined in step one. The
allowable compressive stress for each stringer element was revised using Figure
2-72 and resized stringer areas from step one. The method illustrated im Figure
2-75 was used to incorporate the nonlinear biaxial response of the +45° skin.
Modulus and allowable strength were estimated for each skin bar element in step
one based on predicted strain using a stress-strain curve derived for a specific
predicted stress ratio as shown in Figure 2-75. In step two, this process was
repeated using strains and stress ratios determined in step 6ne to update properties

for each skin bar element. P

Ao TR

ALLOWABLE STRENGTH - -—
/iNlTIAL RESIZING

TALLOWABLE STRENGTH
. SECOND RESIZING

\uy/ ux = —01
\_uy/ ay = -0.3
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Figure 2-75
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In the third and final step, the panel was again resized for the conditions
of uniform loading and uniform deflection at the distributed load end. Strength
and stiffness of each element was based on internal stresses and strains from step
T rad (+45°) skin panel

4
thickness was 0.22 cm (.0865 in.) corresponding to 12 plies, and skin laminate

two. Additional constraints employed were. that minimum +

thicknesses should reflect multiples of four plies to maintain midplane symmetry.

2.2,1.3.4 Predicted Loads Distribution - Stringer, thrust plate, and frame

grea requirements as well as skin gages determined from the sizing procedure were
adjusted to reflect manufacturing considerations and are shown in Figures 2-76
through 2-78. These member gages, as well as material properties consistent with
internal stresses and strains from step three of the sizing procedure, were
incorporated in the finite element model. The 1555 kN (350,000 1lb) concentrated
load was applied to this resized structure with the distributed load end of the
panel supported at a rigid boundary. Resulting load distribution at supported end
of panel has a 6.8% peaking factor as shown in Figure 2-79. 1Internal loads in
stringers, thrust plate, skin, and frames are shown in Figures 2=80 through 2-84. .

Stringer, thrust plate, and frame areas as well as skin thicknesses shown in
Figures 2-76 through 2-78 represent a near minimum weight panel having both
sufficient strength and stiffness to meet the uniform load constraint at the
supported end. In addition to adjustments in areas and gages due to manufacturing
considerations, titanium interleaves also were added locally to stringers and skin
to provide necessary shear and bearing strengths. A sensitivity study employing
the finite element model was made to determine the effect of these perturbations
in member sizes on loads distribution, No effect on internal and external loads
could be determined.

Other modifications, in addition to those mentioned above, were necessary
due to economic considerations. First, steel frames were selected to replace
the titanium frames assumed in the original analysis. This substitution was made
on an equivalent stiffness basis wherever possible. Adequate strength was provided

in every case. Second, the all boron—aluminum thrust post concept was replaced

with one made up of a full length boron-aluminum stringer plus a steel thrust plate
extending over the first bay. This substitution was made on an equivalent stiffness

basis while providing adequate strength.
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50.6 43.1 1.6 534 49.6 48.1 50.6 KIPS

6.8% MAXIMUM DEVIATION
FROM UNIFORM DISTRIBUTICN

LOAD DISTRIBUTION AT DISTRIBUTED LOAD END
OF PANEL IS NEARLY UNIFORM
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2.2.1.3.5 Verification of Method for Predicting Loads - The finite element

technique employed to obtain compression panel internal loads distribution

described in Sectiom 2,2.1.3.4 was used also to predict loads distribution for

the component panel whose structural arrangement is described in Section 2.5.

While at 589°K (600°F), the component panel was subjected to a 1555 kN (350,000 1b)
concentrated load at one end and supported on an elastic foundation at the other.
Loads distribution predicted by the finite element model for this same condition

are compared in Figure 2-85 to loads obtained by test. The good agreement between
predicted and measured loads for the component panel verifies the procedure used for
design and analysis of the compression panel.

P = 350 (KIPS)

LOADS DISTRIBUTION
{6000F)

S| | 55 e 5

) 3 3 3

PREDICTED — COMPONENT PANEL(KIPS) 23.0 3.2 48.0 133.5 48.0 3.2 23.0

MEASURED - COMPONENT PANEL(KIPS) 23.6 - - 135.0 45.0 40.0 21.2
S$I UNITS OMITTED FOR CLARITY

PREDICTED LOADS DISTRIBUTION GF COMPONENT
PANEL. VERIFIED BY TEST AT 600°F

Figure 2-85

2.2.1.3.6 Distribution of Shear Flow to Stringer Legs - The shear flow

distribution to the hat section stringers described in Figure 2-81 is transmitted
by mechanical fasteners to the two legs of the hat section stringer. Distribution
of this shear flow to each leg of the hat is important for local shear and bearing
strength considerations. Therefore,a finite element model of a portion of the
compression panel was created using the NASTRAN program. Five stringers and one
bay of the compression panel were modeled as shown in Figure 2-86 using ortho-
tropic plate elements and bar elements. Each hat section stringer was modeled with
multiple plate elements to obtain distribution of lead in the cross section. The

thrust post and frames were modeled with bar elements. Orthotropic plate elements
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Member gages and material properties were chosen
to reflect those in the compression panel at 589°K (600°F).

were used to model the +45° skin.

Internal skin and
stringer loads at the first intermediate frame, obtained from the finite element

model of the compression panel, were used as applied loads in the NASTRAN model.

PORTION OF COMPRESSION
PANEL MODELED WITH
NASTRAN ORTHOTROPIC

TYFICAL GRID
OF PLATE ELEMENTS
- MODELING STRINGERS

NASTRAN MODEL |TO DETERMINE DISTRIBUTION OF SHEAR
FLOW BETWEEN LEGS OF HAT SECTION STRINGERS

Figure 2-86
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The maximum ratio of shear flows (ql/q2 in Figure 2-86 ) introduced to the
legs of the hat was found to be 1.36 corresponding to 42.5% of the shear introduced
to cne leg and 57.5% iptroduced to the other. Based on these results, detail
analysis of the skin/stringer joints in the compression pamnel assumed that 607% of
the shear in Figure 2-81 could be introduced through either leg of the hat.

2.2.1.4 Detailed Strength Analysis - This section contains strength analysis

of the compression panel in specific areas as defined in Figure 2-87.
a) strength analysis of outboard stringer (Section A-A)
b) shear and bearing analysis of stringer for loads introduced through
mechanical fasteners (Section B-B)
¢) ultimate strength analysis of skin for biaxial loading and shear (View C)

d) buckling analysis of skin (View D)

¥ =548 cm

3.3 cm '—‘I (216 IN.)
183 cm
(7.2 IN.)
(TYP}

X=00cm

Coemy Y
'{_ 305 cm
' 201N}

D
9,65 cm i
(3.8 IN.}
9.15 cm
(3.5 IN.)

Ly

I Bl B .

X =6L.0 em
f T —{_ 24,0 IN.}
SKIN— 5.08 em |

STRINGER: — %= 1220 ¢m
—\\\ {480 1N.)

—— X=183.0 cm
(72,01

+X

STRENGTH CHECK LOCATIONS ON COMPRESSION PANEL Ficore 287
igure 267 .
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Stringer Analysis - Based on shear and bending moment distributions shown

in Figure 2-88, the critical section occurs at Section E-E (X = 61 cm, 24 in.).
This section is shown in Figure 2-89. The maximum applied bending moment of 406 M-N
(3600 in.-1bs) was obtained from a beam column solution. Maximum applied stress

due to axial locad and bending is:

P MC
F=32tT
_ =823, 40.7 (-1.57)
3.68 9.37

-22.36 - 6.82 = -29.2 kN/cm2 (—43200 psi)

The allowable compressive load of a 11 ply unidirectional stringer is 110 kN

(24,500 1bs) (Ref. Figure 2-44) which results in an average allowable stress of

The resulting margin of safety is slightly conservative since effective skin was not
included.

ALL -29.9 _
F ~29.2

1= .02

Stringer Bearing and Shear Analysis - The section to be analyzed (Section B-B)

is located 66 cm (26 in.) from the thin end of the outboard stringer as shown in
Figure 2-90. The applied shear flow on stringer at X = 66 cm (26 in.) is

q = 193.0 kN/m (1100 1bé/in.) (Ref. Figure 2-81). The inboard leg of stringer is
designed td withstand 60 percent of this shear as described in Section 2.2.1.3.6.

Load applied to stringer per fastener is:

PappriEp = -90 4o

.6 (193.0) (.0292) = 3380N (760 lbs)-
An allowable load of 3560N (800 1lbs) per fastener at 589°K (600°F) is determined

]

from Figure 2-69 for a layup having 13 0 rad (0°) B/AL plies and 1 titanium ply.
Of the two potential failure modes (bearing and shear), shear is predominant at
this location. Margin of safety is:

M5, = ALL _ . _ 3560

P = 3380 L+ - *05

Based on a comparison of applied and allowable loads shown in Figure 2-91 , the
margin of safety is larger at all other stations for in-plane shear strength.
This figure also indicates that shear strength would be unacceptable without

titanium interleaves.
2-82

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EASYT



BORON ALUMINUM FOR

REPORT MDC E0825
SPACE SHUTTLE COMPONENTS FINAL REPORT 30 JULY 1973
SECTION A-A ROTATED /2 rad' CCW. (REF. FIG. 2-87)
i ) S " ; E~E
i E - _J . -
- q(SHEAR
§1.em (24 in)- l FLOW) .
178N (TYP) 209N 2046 N 1823 N
(391 LBS): (470 LBS) (460 LBS) (410 LBS)
210 kN/m (1200 LB/IN.)

APPLIED SHEAR

FLOW - q
o) o)

4,22 kN (950 LB)
SHEAR
\ T\ DIAGRAM
o \\\ N o
o . m o
BENDING MOMENT
DIAGRAM
407 m~N (3600 IN-LB}
CRITICAL LOCATION
 —— 222 kN (50000 LBS)
AXIAL LOAD
DIAGRAM
o 0
STRINGER “‘C'* EXTERNAL AND INTERNAL LOADS
Figure 2-88
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—t=0.21 em (0,0825 IN.)
ULTIMATE LOADS AT 583%K (600°F) 11 PLIES UNIDIRECTIONAL B/AL

P =-82.2 kN (~18500 LB)

M= 405 m—N (3500 IN-LB)

A= 368 em? (0570 IN)

I = 93.5 em (0.225 IN.%}

¥ = 1.58 cm (0.66 IN.)

C= = ff —t/2)= =157 cm (-0.619 IN.)

434 cm (L71IN)

K—n/af rad {* 45%) SKIN
20,15 cm (4.64 INJA

SECTION E-E OF FIGURE 2~38
STRINGER “*C'' CROSS SECTION AT X = 61 cm Figure 289

UNIDIRECTIONAL STRINGER
WITH TITANIUM INTERLEAVES

4635 ¢m (.25 IN) DIA,
HI-LOKS

I+

r;—rad SKIN

13 PLIES O rad B/AL
1 PLY 6AL—4V TITANIUM

STRINGER *“C"' SINGLE SHEAR FAILURE PLANE

Figure 2-30
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TEMPERATURE = 589%K (600°F)

N 0.4q
150 M
' 250 : ALLOWABLE
: B-AL + TI
1.25f
200 ]
= 1.0
=
Sz _ 150
e 20753 —
i = 100 Pd \...
S5 ALLOWABLE
5 050 / T e ¥, S Y]
: N ~—————{ APPLIED
Lo (060 _
0 20 10 60 80 100 120 120 160 180 200
cm
| | | | | | | N |
0 10 20 30 10 50 ) 70 80

STRINGER LOCATION, X

OUTBOARD STRINGER “C'" IS CRITICAL AT X = 66 ¢m (26 IN.)

FOR IN PLANE SHEAR STRENGTH Fi
igure 2=21

Ultimate Strength Analysis of Skin at+ S589°K - Shear and biaxial stresses

acting on skin at location "C" (Figure 2-87) are shown in Figure 2-92 , Shear
strength allowable of a i-% rad (+45°) midplane symmetric laminate is limited

by the transverse tensile strain allowable of the individual lamina. As

illustrated in Figure 2-93, adding compressive stresses to a i-% rad (+45°) laminate
loaded in shear reduces the transverse tensile strain. This condition allows the
application of additional shear loading to arrive at the same allowable transverse
tensile strain as the pure shear condition, Therefore, for the condition of shear
and biaxial compression, the margin of safety is conservative when the appiied

shear stress is compared to a pure shear stress allowable for a laminate. Shear
strength allowable determined from tests at 589°K (600°F) is Fi; = 151 MN/m2

(21,900 psi), reference Figure 2-28,

FoH
Mg, =2 -1 =81 5
S 120
F
xy
2-85

' MCDONNELL DOUGLAS A'STRONAUT‘I’CS COMPANY - EAAST



BORON ALUMINUM FOR REPORT MDC E0825
SPACE SHUTTLE COMPONENTS FINAL REPORT

30 JULY 1973
w/t ad () —
Fx APPLIED ULTIMATE STRESSES
, Fo = 3.9 WN/n” (5650 PS)
e F = 36.8 M\ (5350 PS)
Xy ;
_— FS = 120 N/ (17400 PS1)
FC Xy
y

(]

SKIN LAYUP

ot /8 rad (-45% B/AL WITH TITANIUM INTERLEAVES
o 44 B/AL PLIES - 0,819 ¢m (0.330 IN.)
VIEW C

® 4 TITANIUM PLIES - 0,076 cm (0030 IN.) 6AL~4V ANNEALED
(REF FIG 2=-87)- - '

ULTIMATE STRENGTH ANALYSIS OF SKIN (5899K)

Figure 2-92
Fe
4
~
/7 + N
N
’ ~
SHEAR COMPONENT COMPRESSION COMPONENT
7 ~
s ~
7/ ~
7/ A
4 AN
7 ~ Fe
/ N
/ _Fg hY +
—"'-'-—7——- \

A T
<) NOK - ANA

LONGITUDINAL AND TRAKSYERSE TENSION LONGITUDINAL. AND TRANSVERSE COMPRESSION
AND COMPRESSION ON THE LAMINA. AND SHEAR ON THE LAMINA,

COMPRESSIVE STRESSES ON + /4 rad LAMINATE LOADED IN SHEAR
REDUCE LAMINA TRANSVERSE TENSILE STRESSES

N

Figure 2-93
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Skin Buckling Analysis - Shear and biaxial stresses acting on the skin at

location "D" (Figure 2-87) are shown in Figure 2-94. The allowable compressive
buckling stress under the combined applied stresses is Fxcr = 73.8 MN/m2

(10,700 psi) and was obtained utilizing the method of analysis given in Section
2.2.1.2., Margin of safety for buckling is

F
M5, =-X¢£ _ 1 -13.8_; _ 1 g

—={ = b= 8.2 cm (3.29 IN.)

i S a= bl cm (24 IN.)
Ay
il
F¢ ?
y ° = 25,6 MN/m (3710 PSI)

Fc = 12.7 MN/mZ (1850 PSI)
= 63.8 N /m (9270 PS1)

VIEW B
(REF FIG 2-87)
Applied Ultimate Stresses at 589°K (600°F)
| [Troamuon 2 SURFACE PLIES
T SAL=4V TITANIUH {ANNEAIGED)
[ E= 90.3 GN/n” (13.1 x 10° PSI)
B/AL G=352GN/m (5.1 x105PSl) » REF_B
0018 em | -5 Com
(0.0075 IN. | +45 =
TYP) * A

BORON ALUMINUM PLIES
E, =l GN/m? J8.9x 106 psl
ET _37scnfm (5. 45x10 PSI) A
GLT—ZQZGN/m (4,25 x 108 PSI)
u 7= 0.30

A BORON ALUMINUM PROPERTIES REPRESENT LAMINA SECANT STIFFNESS VALUES AT THE
LAMINA STRESSES CORRESPONDING TO THE APPLIED STRESSES.

Skin Stacking Sequence and Properties

PROPERTIES FOR SKIN BUCKLING ANALYSIS
2-87
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2.2.1.5 Compression Panel Weights - A weight summary of the 1.22m (48 in.)

wide by 1.83m (72 in.) long skin-stringer Compression Panel is shown iIn Figure
2-95, Total panel calculated weight is 95.51 kg (210.63 1bs) of which 43.67 kg
(96.34 1lbs) is boron-aluminum strictural elements including weight of all
titanium interleaves. As described earlier, frames and fittings were not optimiz-
ed for minimum weight and comprise a significant percentage (40%) of the total

panel weight,

NUMBER WEIGHT (1
MATERIAL ITEM NEIGHT (1)
REQUIRED . o)
BORON-ALUMINUM | STRINGER § 1 6.39 14.10
WITH I TITANIUM STRINGER A 2 6.17 13.62
INTERLEAVES STRINGER B 2 5.02 11.08 43.67 ke
STRINGER € 2 5.24 11.56 %.34 LB
SKIN 1 20.85 45.98
STEEL THRUST PLATE 1 2.32 5.12
FRAMES 16.14 35.58
FITTINGS 80 20.78 25.83
ALUMINUN SHINS - 0.52 1.15
STEEL & TITANIUM | MECHANICAL - 12.08 26.64
ATTACHMENTS
> %58l 210,63
(1) CALCULATED WEIGHTS

COMPRESSION PANEL WEIGHT SUMMARY Figure 295

(lote: 1In the following two sectioms, Section 2.2.2 and Section 2.2.3, is
described work performed on the Truss Beam design and Shear Web Beam design
respectively, These designs represent two possible approaches to beam or transfer
primary Shuttle engine thrust loads from engine support points to the Shuttle
sidewall structure - of which the Compression Panel fabricated under this program
is a simulated part. The evaluation of these possible approaches under Phase II
was done to permit optimization or selection of the appropriate configuration

for this thrust support structure; hence, it is included under Phase II in this

report although unrelated the Compression Panel design itself).
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2.2.2 Truss Beam Design and Analysis - Requirements for minimum weight and feasible

joint and lug design dictated the truss beam concept shown in Figure 2-96, Tubular
members with both circular and rectangular cross sections were evaluated. Although
a circular tube loaded in compression is lighter, this weight savings is more than
offset by the weight penalties of the complex and heavy fittings required for
joining circular tubes., TFurther, bending moments can be more efficiently carried
by rectangular members., Consequently, a rectangular member with variable cap width
is an efficient compromise when axial load, bending, joint requirements, and lug
design are all considered.

The truss beam compression members are rectangular tubes formed by braze
bonding two flat plate caps of variable width and thickness to two channel sections.
Tension members are integrally-constructed "I" sections which also have caps of
variable width and thickness. All members were designed to fit together with
only minimum use of shims.

Members are joined by mechanical fasteners through the caps where cap width
is increased locally to accomodate sufficient mechanical fasteners. This technique
eliminates heavy gusset members at joints and minimfzes the number of mechanical
fasteners because selected highly loaded members are continuous through the joint,
Titanium interleaves are added in the joint areas te provide necessary bearing

strength, Lugs are formed by extending the cap members.

2.2.2.1 Truss Beam Internal Loads Distribution - Basic geometry and applied
loads for the truss structure are shown in Figure 2-97. Although the structure
is extermnally statically determinate, it is internally redundant because of fixed
joints, continuous members, and side loads applied at lugs 45.7 cm (18 in.) below

truss cap member., Initial member sizes were obtained assuming pinned joints and

an estimated internal moment distribution. These initial member sizes were used
in a finite element analysis of the structure to obtain final leads distribution.
A finlte element model of the truss, Figure 2-98, was constructed using
bending bars connected by rigid joints for solution with CASD (Reference Sectiom
2.2.1.2). External loads and moments were applied to the model as indicated in
Figure 2-98 and the resulting deflected shape and internal loads distribution
are shown in Figures 2-99 and 2-100. These internal loads were used to resize the
members in the final analysis. In addition, a reversed loading condition was
assumed for design of tensile members. Members AB and BC were designed for a
compressive load of 78.4 kN while members BD and BF were designed for 209 kN 4in

compression.
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2018 kN
{453 KIP)
| 432 em
ff {170 in)
305 em
(120 in}
. 305 cm -—
(120 in
244 kN 488 kN
(55 KIP) ’ (110 KIP) T
46 cm
(18-in}
1460 kN 4020 kN 1460 kN
{330 KIP (906 KIP) (330 KIF)
TRUSS BEAM GEOMETRY AND APPLIED LOADS ]
Figure 2-97
|- 42 en
(170 IN.)
2170 kN 2010 kN 2760 kN
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Figure 2- 98
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Figure 2—-99
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2.2.2.2 Detailed Strength Analysis - Analysis of the truss structure required

no unusual analytical methods as all members were subjected to a simple combination
of compressive or tensile stress, shear stress and bending stress.

Tensile members contain sufficient area to carry tensile loads based on room
temperature ultimate tensile strength (1110.0 MN/mz) of the material. Because
the compressive load for these members is small compared to the tensile load, the
required moments-of-inertia are small. As a result, when loaded in compression
they respond as slender columns and the allowable column load is given by the

Euler Column Formula:

2
T ELImin
Peol = 2
L
where, EL = Elastic modulus in the longitudinal direction
L = effective column length
Imin = minimum moment of inertia

Optimization of compression members for minimum weight involved the use of
Johnson’s column formula to include interaction of primary flexural mode of failure

and local crippling mode.

whe re ce

and Fcci = crippling strength of the ith element
bi = width of the ith element
ti = thickness of ith element
L = effective colum length
Imin = minimum moment of inertia

Crippling strength (Fcc) is based on test data for unidirectional boren-aluminum,

discussed in Section 2.1.2. TFor compression members which also carry high bending

moments, additional strength over that determined by the optimization procedure
2-94
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was required. For these members, cap areas were increased as necessary to limit
the combined compressive and bending stress to the crippling strength of the cap-

The final cross section geometry of each member was determined by an
iterative process based on requirements for strength, stability and dimensional
compatibility with other members. Centerline member B-E was used as the base
member with other members sized for proper fit. !

Analysis of compression member E-D is shown to illustrate checks made of
each member in the truss. Member E-D has both high compressive and bending loads,
as indicated by the shear, moment and axial lcad diagram shown in Figure 2-101 .
The cross section A-A shown in Figure 2-102 is that of the center one-third of the
member., Sipce this member must fit inside the caps of member B-E, its depth is
established at 8.38 cm (3.30 in.). As a result, this section has more than
adequate stability to resist column buckling about the y-axis. However, the
section must also have sufficient strength to carry axial load and bending about
the x-axis. Section A-A has the following properties related to the x-axis,

A =52.8 cm? (8.2 in.?)

1165 en® (28.0 in.™)
¥ = 6.35 em (2.5 in.)

H
It

From Figure 2-101, the maximum ultimate axial and bending loads acting om Section

A-A are,

P
M

1820 kN (410 KIP)
78 m=-kN (700 in. - KIP)

1]

substitution of these values in the following equation for determining maximum

axial stress yields,

T
X + 1
pd

345 + 430 =775 M¥/m> (112.5 KIP/in.%)

F

The allowable crippling strength of cap elements at Section A~A 1is
F__ = 1040 Mi/n’ (150 KIP/in,")
Therefore, the margin of safety for Section A-A is,
F
cc -1
F

1.33 -1 = .33

M.5.

A similar analysis performed at the end of member E-D where the moment is 214

m-kN results in a margin of safety of .08.
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My =214 m - kN
(1900 in - KIP)

——

P ___ ~——P= 10
- (410 KIP)
=201 m - kN
(30 KIP)
133 kN
(30 KiPy—
SHEAR
DIAGRAM
201 m-kN
{1779 in- KIP)
BENDING
MOMENT
DIAGRAM
214m - kN
(1900 in ~ KIP)~
1820 kN
{410 KIP)—
AXIAL
LOAD
DIAGRAM
*SEE FIGURE 2-102
MEMBER E-D INTERNAL LOADS
Figure 2-101
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Y
A
— ] 127 em
(.50 in.)

2.54 em
(1.00 in.)

15.24 cm
(6.00 in.)

L

' J6 cm
8.38 cm ] (_30 in.)

{3.30 in)

TRUSS MEMBER E-D CROSS SECTION GEOMETRY
~ SECTION A-A (FIGURE 2-101)

Figure 2-102
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2.2.2,3 Truss Begm Weight Summary - The following distribution of estimated

weight for the truss structure includes the use of titanium interleaves, titanium
firtings, and steel fasteners. It does not include weight for contingencies or

nonoptimum factors.

Individual :

Members: B-A 11.70 kg (25.80 1b)
B-C 11.70 kg (25.80 1b)
A-F 69.95 kg {154.20 1b)
C-D 69.95 kg (154,20 1b)
B-F 26.79 kg (58.90 1b)
B~D 26.79 kg (58.90 1b)
E-F 62,87 kg (138,60 1b)
E-D 62.87 kg {138.60 1b)
B-E 67.22 kg (148.20 1b)

Fasteners: 28,95 kg (64.00 1b)

Web Fittings and

Shear Clips: 20,30 kg - (45,00 1b)

Total Weight: 459.1 kg (1012.2 1b)

2.2.3 Shear Web Beam Design and Analysis

Selection of the shear web beam design shown in Figures 2-103 and 2-104 was
based on an investigation of the fellowing shear panel configurations:

(1) an unstiffened + w/4 rad (+45°) laminated skin

(2) astiffined+ w/4 (+45°) laminated skin

(3) an unstiffened, braze bonded honeycomb sandwich with + n/4 rad (+45°)

face sheets and titanium core

(4) a stiffened, braze bonded honeycomb sandwich

The unstiffened braze bonded honeycomb sandwich configuration was selected
because it was lighter and easiest to fabricate. Use of titanium honeycomb core
rather than aluminum honeycomb core allows the face sheet plies to be eutectically
bonded at the same time the face sheets are braze bonded to the core. Each face
sheet on the two outboard shear panels is a six ply [+45°, ti, —45°]S laminate
while each face sheet on the inboard panels is a three ply [+45°, ti, -45°]
laminate. Titanium interleaves are used in the face sheets to increase in-plane
ghear strength. The titanium honeycomb core for all pamels is 2,54 cm (1 in.)
thick and has a density of 78.5 kg/m3 (4.9 lb/fta)-

Vertical stiffening members of the beam are formed by joining two unidirectional
boron aluminum hat sections to edge members on the shear panels as shown in Figure
2-104. Since three of the vertical members are also subjected to in-plane bending

moments, these members have a cap added to the crown of the hat section. The
2-98
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caps are extended to form lugs at the load introduction end éf the structure.
Vertical members are tapered in height, width, and thickness, commensurate with
axial load distribution, to achieve minimum weight.

Both the compression and tension caps are constant width charnel sections
tapering in thickness as permitted by axial load distribution.

2.2.3.1 Shear Web Beam Internal Loads Distribution - Basic geometry and

external loads applied to shear web beam are shown in Figure 2-105. TLoads applied
to the three inboard vertical members are reacted by the two outboard vertical
members and the lower cap member. For these reactions, the structure is externally

statically determinate.

2450 2500
{551} {362)
152 304
* (60) (120)
254
100y
T
244 488 __, | (185)
(45) ) (110) )
30.5
(12) 1470 2010 1470
(330) (453) (330)
NOTE: LOADS ARE GIVEN IN kN OR (KIPS)
LENGTHS ARE GIVEN IN ¢m OR (IN.)
SHEAR WEB BEAM GEOMETRY AND EXTERNAL LOADS Fiure 2105
igure Z-

The internal loads distribution used in sizing the shear web members is
shown in Figure 2-106. This distribution is based on the assumption that bending
moments caused by eccentrically applied external side loads are carried entirely
by the three inboard vertical members.

2.2.3.2 Detailed Strength Analysis - Face sheets of honeycomb sandwich

structures loaded in shear are designed primarily on the basis of strength. The

honeycomb core density and cell size are selected to preclude local instability

2-101
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failures of face sheets such as wrinkling and intracell buckling. Core thickness
is selected to prevent overall shear buckling of the panel.

Based on an ultimate strain failure criteria, it can be shown analytically
that the shear s.rength. of a + w/4 rad (+45°) laminate is directly proportiomal to
the transverse tensile strain capability of the plies. Tests have verified that
titanium interleavés will improve the transverse tensile strength of unidirectional
boron-aluminum and the effect of adding one titanium ply to four boron aluminum
plies is shown in Figure 2-107, A comparison of the stress-strain response curves
shows that the transverse strength is improved by a factor of three and, of more
slgnificance, the ultimate strain increases from about 3300 y m/m to more than
12000 u m/m.

Improvement in transverse ultimate strain using titanjum interleaves is
expected to have a marked effect on shear strength of + n/4 rad (+45°) laminates.
Since shear strengths of 297 MN/m2 (43 KSI) were consistently obtained in rail
shear tests of + w/4 rad (+45°) laminates without titanium reinforcement (Reference
Section 2.1.2), a significantly higher shear strength may be anticipated when
titanium interleaves are used. Therefore, a shear strength of 448 MN/m2 (65 KSI)
was used to determine face sheet thicknesses ofrthe shear panels.

The overall thickness of the shear panels is determined by stability require-
ments. Core thickness is selected such that the applied shear flow q is equal to
or less than the shear flow causing buckling, qcr' l

2,2 3 .1/4 5.05

Yy = ) (D11D22) (8.125 + —e—-—); if 6 > 1
Or: q = (g)2 D,,(D,, + 2D, ) x (11.7 + .532 & + .93882)- if 8 <1
' ey b 227712 66 ' : ’
where, 8 = D11D22 D12 + 2D66)
= shear panel width
Dij = honeycomb sandwich stiffness coefficients (includes

core and face sheets)

Caps and vertical members loaded in compression or tension were analyzed using
the same procedures discussed in Section 2.2.2.2. Although members loaded in
compression and bending are stabilized in-plane by the shear panels, they were
sized to prevent out-of-plane instability failure as well. Applied compressive

and bending loads reduce linearly in these members as load is introduced into the

2-103

MCDONNELL DOUGLAS ASTRONMAUTICS COMPANY - EAST



BORON ALUMINUM FOR

SPACE SHUTTLE COMPONENTS

TENSILE STRENGTH, F! - KS

X

60

50

40

30

20

10

n

350

300

250

200

Ml*l/’m2

150

100

50

FINAL REPORT

REPORT MDC E0825
30 JULY 1973

TENSILE STRAIN, ¢ ,} = m/m

Ft
X
FILAMENT
=] " DIRECTION -
Ke Xt /
- Z
E/‘ [50, 98, 71, 90, 90] WITH TITANIUM
\ INTERLEAVES
J/
/ EpAY EMAX
/-*' %
\ UNIDIRECTIONAL
E/—[gﬂs]
7,000 2,000 5,000 3,000 10,000 12,000

TITANIUM INTERLEAVES IMPROVE TRANSVERSE TENSION FAILURE STRAINS

2-104

MCOONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST

Figure 2107



BORON ALUMINUM FOR REPORT MDC E0825
SPACE SHUTTLE COMPONENTS FINAL REPORT 30 JULY 1973

shear panels. Consequently, both the moment of inertia and cross sectional area
have been reduced accordingly by tapering the section.

The outboard sheatr panel experiencing the highest shear load is selected for
analysis to illustrate primary checks made of all shear panels. Each six ply
face sheet has a thickness (tf) of .114 cm (.045 in.) and an ultimate shear
strength, Fz;, of 448 MN/m2 {65 KSI). Therefore, the allowable shear flow, qall’
is,

su
= F
Q211 Xy (th)

1.02 MN/m (5.85 KIP/in.)

From Figure 2-106, the applied shear flow, q, in this panel is
g = .984 MN/m (5.62 KIP/in.)

Therefore, the margin of safety for face sheet strength is,

M.s. = %311 -1 = .0

P~

To determine shear buckling strength of the panel, the equation given above for

the case where 8 < 1 is used,

2
- (& 2
Gor = @ YPp(Ppy ¥ Wge) [LLT + 5320 + .9386°)

The outboard shear panel has the following properties;

b = 1.52 m (60 in.)

Dll = D22 = 47.4 m - kN (420 in.-KIP)
Dl2 = 14.2 m - kN (126 in.-KIP)

D66 = 25.4 m - kN (225 in.-KIP)

8 = 730

Substitution of these values into the buckling equation, yields the following,
q,, = 1.20 M8/m (6.90 KIP/in.)
The margin of safety for shear buckling is,

M.S5. = qcr -1-=

q

I

2-105
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2.2.3.3 Shear Web Beam Weight Summary - The following distribution of

estimated weights for the shear web structure includes the use of titanium inter-
leaves, shear panel edge members, and fasteners. Weight for contingencies and

nonoptimum factors is not included.

Outer Shear Panels: 60.5 kg | (133.4 1b)
Inner Shear Panels: 80.5 kg (177.9 1b)
Inner Vertical Members: 110.0 kg (243 1b)
Outer Vertical Members: 27.5 kg (60.8 1b)
Compression Cap: 64.8 kg (142.7 1b)
Tension Cap: 20.8 kg (46.1 1b)
Fittings and Shear Clips: 48.4 kg {(106.5 1b)
Fasteners: 8.6 kg {19 1b)
Total Weight: 421.1 kg (929.4 1b)
2-106
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2.3 Phase ITl - Process Technelogy Development

The objective of this phase of the program was to improve the procedures and
techniques used to fabricate boron-aluminum structural components. Within this

phase the development work was divided into four major tasks. These were:

a

Improvement of the eutectic bonding process

® Improved manufacturing methods

(-3

Metallurgical joining development
® Preparation of process specifications
Results of studies conducted in each of these areas are summarized in this section.

2.3.1 Eutectic Bonding Process Development - Eutectic bonding is a diffusion

brazing process developed by MDAC-E for fabricating B/Al structural components from
monolayer foil. This process relies on the diffusion of a thin surface film of
copper into the aluminum matrix to form a liquid phase when heated above the copper-
aluminum eutectic temperature of 821°K (1018°F). The basic bonding parameters had
been defined and the process feasibility demonstrated prior to the onset of this
program. Therefore, development studies undertaken in this program were directed
toward the optimization of the process to ensure successful fabrication of the
compression panel and test components. The process optimization was concerned with
chemical cleaning and copper coating of monolayer foils and the selection of bond-
ing conditions to minimize fiber degradation. 1In addition, the ability to include

titanium interleaves in eutectic bonded laminates was demonstrated.

2.3.1.1 Optimization of Chemical Cleaning - Chemical cleaning is important

in eutectic bonding for several reasons. Clean surfaces are required to ensure
adherence of copper during the subsequent vapor deposition process and to permit
free atomic movement during the diffusion process which results in the formation
of a liquid phase and metallurgical joining of adjacent monolayers. Also, surface
films due to lack of cleaning, present at the time of copper coating, could be
trapped in the joint area and, if present in sufficient quantities, could lower
joint properties.

The approach to improving the cleaning process consisted of rating sevéral
standard cleaning solutions according to their ability to remove surface films and
the rate at which they dissolved aluminum. An "optimum' method was selected on

the basis of these ratings. Then, the rate of film build-up was related to
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enviromnment to establish storage conditions and time limits for monolayer foils

after cleaning and before coating.

Selection of a Test Method - Several standard cleaning procedures were used

during the initial development of eutectic bonding to prepare boron-aluminum mono-
layer foils for coating. Also, efforts were made to compare them and select an
optimum process. However, initially, the principal test method employed was peel-
testing of bonded samples. This approach was considered to be of limited value
because the cleaning methods could not be rated quantitatively. Also, the bonding
process itself may have introduced other variables, unrelated to cleaning, and
influenced peel strength. A better method of comparing the effectiveness of
various cleaning methods was needed to optimize the processing of boron-aluminum
foils. The method selected for this program was to measure the residual £ilm thick-
ness, assumed to be an oxide, immediately after cleaning. Ellipsometry was selected
as the technique for measuring these thin films, and 1100~0 aluminum foil was used
for test specimens.

An ellipsometer is an optical instrument which has sufficient sensitivity
to detect a single layer of adsorbed oxygen or oxide molecules on a metallic
surface. This high degree of sensitivity made it an ideal instrument for comparing
cleaning solutions by measuring residual film thickness. Ellipsometry measures
changes in the polarization of monechrematic light upon reflection at an optical
boundary. The magnitude of the change can be used to calculate the thickness of
surface films provided the composition and optical properties of the film and

substrate are known. A photograph of the ellipsometer is shown in Figure 2-108.

Comparison of Cleaning Processes - A standard method of cleaning aluminum

alloys for removal of surface oxides consists of solvent or vapor degreasing
followed by alkaline cleaning to remove soil and finally acid pickling or deoxidiz-
ing to remove smut and oxide films. Several commercial cleaners and deoxidizers
are approved for use at MDAC-E and are listed as options in various process
specifications for cleaning aluminum. These materials were compared to determine
if any particular combination of alkaline cleaner, deoxidizer and immersion time
was superior from the standpoint of residual film thickness. Three alkaline
cleaners plus four deoxidizers were evaluated, and the immersion times were varied
to provide 108 combinations of cleaning procedures. Triplicate specimens of 1100-0
aluminum, .15 mm (.006-in.), were tested under each condition. The cleaning

solutions and test conditions are listed in Table 2-1 and are summarized as follows:
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Alkaline Cleaner Deoxidizer
Solution Time (min.) Solution Time (min.)
Turco 42158 5y 174 30 Amchem 7 3, 64 10
Turco 4090 5, 17, 30 4 Acid Type 3, 6, 10
Pennsalt 85 5, 17, 30 Smut Go #1 3, 6, 10
Acid Pickle L, 8, 15

ANALYZER

457~3519

" ELLIPSOMETER
| Base

ELLIPSOMETER AND ASSOCIATED EQUIPMENT
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Alkaline Cleaners
CHEMICAL CONCENTRATION | TEMPERATURE | IMMERSION
1. TURCO 42155 - CHROMATED NON- | 5.5+7.0 0Z/GAL 0 :
SILICATED CLEANER 150+ 5°F 5,17, 30 N
TURCO 4215 ADDITIVE 1FLOZ/OF .
CLEANER
2 PENNSALT 85 -~ NON-SILICATED 3-6 0Z/GAL 170~180°F 5,17, 30 MIN
CLEANER
3. TURCO 4090 ~ SILICATED CLEANER| 4-6 0Z/GAL 180 + 10°F 5,17, 30 MIN
Deoxidizers
TYPE CHEMICAL CONCENTRATION | TEMPERATURE |  IMMERSION
AMCHEM | AMCHEM DEOXIDIZER NO. 7 30Z/GAL
NITRIC ACID 420 Be’ 12% BY VOLUME 76-100°F 3,6, 10MIN
WATER, TAP REMAINDER
4ACID | CHROMIC ACID ~ FLAKES 6 0Z/GAL
(FED SPEC 0~C-303)
SULFURIC ACID, 667 Be' 18% BY VOLUNE
(SPEC 0-5-809, TYPE 1, CLASS 1) ‘
PHOSPHORIC ACID (75%) 30% BY VOLUME 70-100°F 3,6, 10 MIN -
(TECH GRADE, 0~0~670, CLASS 1)
HYDROFLUORIC ACID, 70% 0.15% BY VOLUME
{SPEC D~H-795)
WATER, TAP REMAINDER
SMUT-GO [ SMUT-GO NO. ! 8-16 0Z/GAL o
WATER, TAP TO MAKE 1 GALLON | 'O100°F 3,6, 10 MIN
ACID NITRIC ACID, 42° Be' 9.3 TO 10.5 GALLONS
PICKLE | (SPEC 0~N=-350)
CHROMIC ACID FLAKES 38-42 LB
(SPEC 0~C-303, TYPE 2) 10
HYDROFLUORIC ACID, 70% 0.85T0 1.0 gALLON | 'O-100°F 1,8, L5 MIN
(SPEC 0~H~795)
WATER, TAP TO MAKE 100 GALLONS

CLEANING SOLUTIONS AND IMMERSION TIMES EVALUATED FOR APPLICATION
TO BORON-ALUMINUM MONOLAYER PRIOR TO COPPER COATING
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Test samples were rinsed thoroughly after both alkaline cleaning and deoxidizing
treatments and, after’a final rinse in hot, deionized water, they were dried with
gaseous nitrogen., Ellipsometer readings were made at several stages during the
processing. Selected samples were checked for film thickness in the as-received
condition, after vapor degreasing and after alkaline cleaning. All 324 specimens
were measured after the final deoxidizing treatment. These measurements are based
on the assumption that the film consisted entirely of aluminum oxide. However,
atmospheric exposure probably resulted in the formation of a film of moisture
(<1 nm) over the oxide so that the measurements did not represent the absolute
thickness of the oxide film. This factor was not considered a drawback in measur-—
ing the efficiency of cleaning techniques. The error introduced by ignoring the
moisture was slight, and since all the test specimens were subjected to atmospheric
exposure, they all contained some adsorbed moisture and a similar degree ‘ef error.

The ellipsometry data showed no general trend for increased cleaning efficiency
with increased immersion times. However, there were differences in residual film
thickness attributable to variations in alkaline cleaning and deoxidizing sclutions.
Generally, the most efficient alkaline cleaner, regardless of the deoxidizer used
was the Pennsalt 85 solution. Also, the most efficient deoxidizer was the
HEN03~HF-C1"03 acid pickle. These general trends are shown in Figure 2-109 which
compares the optimum results obtained with each cleaner/deoxidizer combination.

On an overall basis, the systems can be grouped according to residual film thick-

ness as follows:

1. Residual Film Thickness: <3om

Pennsalt 85 + HN03-~HF-CrO3 Acid Pickle

2. Residual Film Thickness: <&4nm
Pennsalt 85 + Amchem 7
Pennsalt 85 + Smut Go No. 1

3. Residual Film Thickness: <5nm

Turco 4090 + HNDB--HF-CrO3 Acid Pickle
Turco 4090 + Amchem 7

Turco 42155 + HNO3—HF—Cr03 Acid Pickle
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ALKALINE CLEANERS

PENNSALT 85 TURCO 4090 B3 Turco 4215
_4-ACID  __SMUT GO NO. 1

- DEOXIDIZER | DEOXIDIZER
= < AMCHEM 7
. § DEOXIDIZER
8 6
:2: \'T\ g HNG3~Cr03-HF
o N N DEOXIDIZER
= NN N
= § N
5 NN QQ.
= %Q QQ
= R
=] d \\ \. Pt
2 N N o
SEEN
R P S 2 3
IMMERSION| ALKALINE 51517 55130 5 [17]30 30| 5 (30
TIME, MIN | DEOXIDIZER 6|3 610]3 53|10 g15] 1

NOTE: CONDITIONS SHOWN REPRESENT “OPTIMUM" RESULTS FROM 108
COMBINATIONS OF CLEANER, DEOXIDIZER AND TIME (324 SPECINENS)

EFFECT OF CHEMICAL TREATMENT ON 1100 ALUMINUM RESIDUAL FILM THICKNESS
Figure 2--109

Rate of Metal Removal During Cleaning — Although the ellipsometer showed which

of the cleaning methods was most efficient from the standpoint of oxide removal,
the amount of metal removal also had to be considered. Metal removal during chemical
cleaning is considered important for boron-aluminum because the layer of matrix
material covering the filaments in boron-aluminum monolayer foil is very thin.
The thickness of composite foil fabricated with .14 mm (.0056-in.) diameter boron
is about .20 mm (.008-in.) so that the filaments are covered by less than 30um per
side of aluminum; hence, even a small loss of surface metal ecould amount to an
appreciable percentage of this layer. This potential problem assumes greater
proportions if recleaning should be required for some reason, because significant
reduction of this thin layer could reduce transverse tension properties appreciably.
The comparison of cleaning procedures indicated significant differences
existed in the aggressiveness of various alkaline cleaner - deoxidizer combinations.
Therefore, a check was made of three of these combinations to determine the
relative amounts of material removed and the influence of immersion times.
Selection of the three systems was made to represent three degrees of severity.

The conditions studied in increasing order of severity of the cleaner-deoxidizer

combination were:
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1. Turco 42155/10 min. + Amchem 7M for 3, 7 and 10 min.

2. Turco 42155/10 min. + HNOB—HF—CrO3 Acid Pickle for 3, 7 and 10 min.

3. Pennsalt 85/39 min., + HNOB—HF-—CrO3 Acid Pickle for 3, 7 and 10 min.

The latter syster had produced the thinnest residual f£ilm thickness {(less than 3 nm)
in the ellipsometric evaluation of cleaning processes.

Samples of 1100-0 aluminum alloy, approximately 25.4 mm x 76.2 mm x 152 mm
(1-in. x 3-in. x 0.006-in.) were weighed and then subjected to the candidate
cleaning methods and reweighed. The weight difference was used to calculate the
metal thickness removed per side. The results of the tests are shown graphically
in Figure 2-110. 1In general, the mildest cleaning method (Turco 4215S + Amchem 7M)
removed about .15 to .30 ym (6 to 12 u-in.) as the deoxidizing time was
increased from 3 to 10 minutes. A removal of .3 pm (12 p-in) would result in a
loss of about 1% of the matrix material covering the boron filaments. Therefore,
monolayer foils could be recleaned many times (perhaps up to 10 times) in this
cleaner-deoxidizer combination without removing more than 10% of the matfix thick-
ness over the center of the filament. Removal of this small % of material is not

considered detrimental.

10
— PENNSALT 85
B 30 MIN
— 122 — 200
L 2 08y
KXY
e L TURCO 42158 Ko
a oo
: 10 MIN KX —{100
o 5 -
— - ..0.- —
w "% —
&= KX -
& %
& o, 7 .
- [ 2 ]
& (505 — a
~— 5]
2 [ K3
5 ] -
= ] o
| TURCD 42158 ] oq
10 MIN o 5%
- id i
%% 5]
2% K5 -110
2% % —
— 2% ¥ —
2% 2%
2% 2% ]
%% %%
2% 2%
; L1 ) -5
0 1 . XS T .I R B, )
' 3710 3 710 31710
AMCHEMI TM HN03-H F~CrOy HN03-H F-Cr03

INMERSION TIME N DEOXIDIZER  MIN
EFFECT OF CLEANING CONDITIONS ON DISSOLUTION OF 11000 ALUMINUM FOIL

Figure 2-110
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On the other hand, a single cleaning in the most efficient combination,
Pennsalt 85/30 min. + HN03-~HF--CrO3 Acid Pickle, for as short a time as 3 min. in
the deoxidizer would result in the loss of 3.56 y-m (140 p-in.) or about 12% of
the matrix material covering the filaments. This loss would be acceptable, but
cleaning in this combination would have to be limited to a single cycle to avoid
a severe loss, and this limitation was considered too restrictive.

The intermediate combination of Turco 4215S + Acid Pickle resulted in metal removal
ranging from .76 to 2.3 ym (30 to 90 y-in.) as the deoxidizing time was increased
from 3 to 10 minutes. In this case, a 3 min. immersion would result in the loss
of about 2.5% of the aluminum covering the filaments.

This series of tests indicated that although the Pennsalt 85 + HN03—-HF-Cr03
Acid Pickle produced the cleanest surface, it would dissolve more than 107 of the
aluminum matrix in a single cleaning operation. Therefore, using this combination
for chemical cleaning of monolayer foils would prohibit recleaning if needed for
any of a variety of reasons. At the other extreme, the mildest combination - Turco
42155 plus Amchem 7M-is relatively inefficient for oxide removal. Samples measured
by ellipsometry during this series of tests showed residual film thickness of about
6 nm with this mild combination.

The intermediate combination of Turco 42158 + HNO3 + HF + CrO3 Acid Pickle for
3 min. offered a good compromise. The metal removal rate (v 2.5%) was sufficiently
low to permit recleaning. Also, this combination is considerably more efficient
than the milder Turco 42155 plus Amchem 7M. Ellipsometer readings made during this
series showed residual films after cleaning in the intermediate system to be about
3.7 nm, or 40% less than measured on specimens subjected to milder environment.
Therefore, the Turco 42158 plus HNO3 + HF + CrO3 Acid Pickle was selected as the
method of cleaning boron-aluminum monolayer foils prior to copper coating.

Finally, a limited test series was made to determine if the boron filaments
would be attacked in the cleaning solutions. This was accomplished by immersing
duplicate samples of boron filament in Amchem 7 deoxidizer for periods up to 20
minutes and in the HNO3 - HF - CrO3 deoxidizer for intervals up to 30 minutes.
There was no change in weight of the boron filaments as a result of these exposure

conditions.

Effect of Storage Conditions - One of the tasks in the cleaning optimization

study was determining the rate at which an oxide film forms on a freshly cleaned
aluminum surface. This investigation was undertaken to determine if a time limit

should be imposed on the interval between cleaning and coating and if storage in an
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inert enviromment would retard the rate of film build-up. In this evaluation,
strips of 1100-0 aluminum foil were chemically cleaned in Pennsalt 85 and HN03 - HF
- CrO3 deoxidizer and Fhen stored in small controlled atmosphere chambers and
exposed to a continual uniform flow of air, nitrogen or argon. Ellipsometer read-
ings of oxide thickness were taken on each sample immediately after cleaning and

at intervals during the test period.

Ellipsometer readings taken immediately after cleaning showed the oxide film
on the test samples to be about 2.2 nm thick. At the end of 1 hour exposure to the
test environments, the film thickness had increased significantly. The oxide
continued to increase throughout the test period of 960 hours but at a slower rate.
After 960 hours, the oxide film thickness had increased about B807% overall; however,
during the first hour alone, the increase amounted to 40%. Also, the rate of
increase was not influenced appreciably by enviromment. These relationships are

shown in Figure 2-111.

100
STORAGE ENVIRONMENT:
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]

60

- — =

40

|

TIME LIMIT BETWEEN
CLEANING AND COATING

INCREASE IN OXIDE THICKNESS — %
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EFFECT OF STORAGE ENVIRONMENT ON BUILD-UP OF OXIDE FILM

ON CHEMICALLY CLEANED ALUMINUM Figure 2-111
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These test results showed that unless coating was begun almost immediately
after the cleaning operation, an increase in oxide film thickness on monolayer foils

could not be avolded even if stored in an inert gas enviromment. This was not
considered practical for a production operation. Therefore, it was necessary to
set a limit on the storage time between cleaning and coating based on the test data
and practical considerations. A limit of 80 hours was established to be consistent
with a normal production flow cycle. Also, this extended interval would result in
very little increase in oxide thickness over a one-hour exposure, as shown in

Figure 2-111.

2,.3.1.2 Vapor Deposition Studies - During this program, a study was under-

taken to improve the techniques for vapor depositing copper on the boron-aluminum
foils for eutectic bonding. This evaluation was concerned with the parameters

of the glow discharge process (ion bombardment) which cleans the monolayer foil
just prior to vapor deposition. The purpose of the evaluation was to determine

the effect of current density and time on oxide removal. This was accomplished in
the ellipsometer which was modified to accommodate an atmosphere chamber in which a
sample could be glow-discharge cleaned and the surface film measured without
exposure to air. Test samples were .15 mm (.006 in.) thick 1100 aluminum alloy
dises, 28.4 mm (1.12 in.) dia.

The test procedure consisted of evacuating the sample chamber and imposing a
high voltage between the chamber wall and the samplé, with the sample as the cathode.
A glow discharge was then initiated by backfilling the chamber with argon until the
desired argon ion current was achieved. Ellipsometer measurements were made prior
to and during the discharge to determine the thickness of the oxide film. The dis-
charge was continued until the measurements indicated that a minimum or threshold
film thickness had been achieved. All the tests were made at 3700 volts but the
current density was varied for each rum.

Test results showed that the oxide was removed at a rapid rate during the early
stage of glow discharge but the rate decreased with time and eventually a thresheld
value of oxide thickness was reached and the removal rate approached zero. Increas-
ing the current density reduced the time required to reach the threshold film
thickness, but did not change the minimum value appreciably. The removal rate,
defined as the ratio of total film removed to the time required to reach the

threshold value, was essentially a linear function of ion current as shown in
Figure 2-112,
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ALL TESTS RUN AT 3700 VOLTS
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EFFECT OF CURRENT DENSITY ON RATE OF OXIDE REMOVAL
DURING GLOW DISCHARGE CLEANING Frgore 2112

Since oxide-free surfaces can be achieved by glow discharge just prior to
coating, it is theoretically possible to eliminate all the chemical cleaning
operations with the exception of vapor degreasing. However, the rate of oxide
removal from aluminum is slow even at the highest current densities evaluated
(Figure 2-112). Since the oxide film on the starting material would exceed 10 pm,
which was demonstrated in the cleaning optimization study, glow discharge times
would exceed one hour even under high current densities to ensure an oxide free
surface. Therefore, chemical cleaning was selected as the primary means to minimize
the surface oxide on monolayers prior to copper coating. Glow discharge was relied
upon primarily to remove only surface layers of adsorbed gases and water vapor and
thereby ensure adherence of the vapor deposited layer.

The final experiment in the glow discharge study was designed to determine if
an oxide-free surface could be maintained under ideal conditions. This was carried
out in an Auger electron spectrometer which is used to determine the chemical

compositon of surface deposits. The test procedure consisted of sputtering the
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oxide off a sample of aluminum, holding it under a partial pressure of argon
(9 x 10_5 torr), and analyzing the surface periodically. The initial scan, taken
30 seconds after ion bombardment was completed, showed a single 67 eV peak char-
acteristic of pure aluminum. As the holding time was increased, the amplitude of
this peak decreased and this was accompanied by the appearance of a second peak at
57 eV. This second peak is associated with the formation of aluminum oxide and
eventually becomes more prominent than the pure aluminum peak. The build-up was
charted by the change in the aluminum peak which diminished as oxide was formed.
Results of the test, shown in Figure 2-113, indicate that oxide begins to
form on a clean aluminum surface almost immediately upon exposure to even a high
purity (vacuum) environment. These measurements indicate that even under ideal
glow discharge conditions, an oxide film would form on the metal surface during the

ten minute period required for evacuation of the chamber to the coating pressare.
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OXIDATION OF ALUMINUM, AS STUDIED BY CHEMICAL SHIFTS

IN 67 eV AUGER PEAK FOR ALUMINUM
Figure 2-113

Effect of Storage Environment on Copper Surfaces - The possibility that freshly

deposited copper would oxidize during the interval between coating and bonding was
investigated. This was also done using ellipsometry. Freshly coated samples of
1100-0 aluminum foil were subjected to several different environments and the film

thickness measured periodically. Initially, specimens were exposed for 168 hours
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and no appreciable difference was noted in the rate of oxidation as a function of
environment. In a second test series, samples were exposed for a total of 960

hours in argon. Oxidation occurred throughout the test period, but the rate
appeared to decrease with time. At the end of the 960 hour exposure, the film
thickness was less than 4 nm. This thickness or amount was not considered
excessive. To ensure that oxidation would be kept within acceptable limits, the
time between coating and bonding was limited to 700 hours and nitrogen was specified

for the storage environment.

2.3.1.3 Effect of Bonding Cycle on Fiber Strength - Eutectic bonding involves

heating above 821°K (1018°F), the aluminum-copper eutectic temperature. When
exposed to elevated temperatures for extended periods of time, boronm and aluminum
will interact which degrades the strength of the boron filaments. Therefore, a
study was undertaken to determine the extent of filament strength degradation for
the times and temperatures associated with eutectic bonding. This study was con-
ducted in two phases. The first was preliminary in nature and made with composite
samples containing 0.10 mm (.004-in.) dia. boron fibers. These tests showed that
some degradation could be expected as a result of the thermal cycle associated with
eutectic bonding.

The second phase of the investigation was more extensive and its objective was
to better define the effects of exposure at temperatures ranging from 549° to 593°K
(1020° to 1100°F). TFor this purpose, a single sheet of 1100 aluminum-matrix com-—
posite foil containing 0.14 mm (0.0056 in.) diameter boron fibers was cut into
gseven groups of specimens. All the specimens to be exposed to a given time-
temperature cycle were from the same group. This procedure was followed to reduce
the normally high data scatter assoclate with composite materials by providing
samples that shared common filaments. The method of selecting test specimens and
the exposure conditions are shown in Figure 2-114,

Thermally exposed samples were heated in a vacuum furnace (1 x 10_5 torr) to
the desired temperature at a rate of 11°K (20°F) per minute, and held for the
required time. Then the specimens were fast cooled to 755°K (900°F) by back-
£i1ling the furnace with argon and furnace cooled to 394°K (250°F).

Tensile test results, listed in Table 2-2 show that some boron fiber
degradation occurred throughout the time/temperature range evaluated. The amount
of degradation varied with both time and temperature and increased with the

gseverity of exposure. For example, at 844°K (1060°F), a holding period of 7 min
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resulted in a strength loss of about 15%; extending the time to 30 min increased
the loss to 35%. A similar effect occurred when the temperature was increased.
Holding at 827°K (1030°F) for 7 min resulted in a 12% strength loss while exposure
to 866°K (1100°F) for the same amount of time produced a 29% loss. The combined
effect of both time and temperature is shown in Figure 2-115 where the exposure

conditions are expressed in terms of a Larson-Miller parameter.

100
90 \
® \
' o
T 80 !
I
g I
E | |
o |
=7 —
b
b
I ' EUTECTIC BONDING
60 1 . LIMITS:
' 1 827°K (1030°F)/15 MIN
I i 844%K (1060°F)/7 MIN
b
I
I
505 58 59 60 81 62
_ ' -3
P= TDR (36+3 Iogmtmi“) x10

EFFECT OF ELEVATED TEMPERATURE EXPOSURE

ON STRENGTH OF BORON-ALUMINUM MONOLAYER FOIL Figure 2115
igure 2—-

On the basis of these tests, limits were established for eutectic bonding
mechanical property test specimens and structural components. The lower limit for
bonding was selected to be 827°K (1030°F) for no more than 15 minutes. An upper
1imit of 844°K (1060°F) for a maximum of 7 minutes was specified. Under these
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conditions, the amount of degradation could not exceed 20% as shown in Figure 2-115
This amount was not considered excessive for the compression panel. Further strength
evaluations using multiple specimens inserted in production packs for quality
assurance purposes showed that the range of realized strength reduction was usually

less than this value (see Section 2.3.2.3).

2.3.1.4 - Co-Eutectic Bonding Boron-Aluminum to Titanium - When structural

analysis of various assemblies in this program indicated the need for local
reinforcement, tests were initiated to determine if titanium interleaves could be
incorporated into boron-aluminum laminates during eutectic bonding to provide such
reinforcement. Initial tests were made on a multi-ply laminate consisting of copper
coated boron-aluminum and bare Ti-6A1-25n-4Zr-2Mo alloy. The lay-up contained three
plies of boron-aluminum interleaved with two plies of 0.30 mm (0.012 in.) thick Ti
alloy. Metallographic examination was used to evaluate the joint and showed the
bond to be continuous and of high quality with an interaction zone less than 1 um
(40 u=in.) thick (Figure 2-116 ). Microprobe analyses were made to determine if

the eutectic former had diffused into the titanium. This analysis indicated that

no significant amount of diffusion had occurred.

~—— BORON
FILAMENT

MATRIX

—~— INTERACTION ZONE
— 40 u—IN.

——TITANIUM
ALLOY

AS POLISHED 500X

TITANIUM ALLOY JOINED TO BORON-ALUMINUM BY AL-CU LIQUID

FORMED DURING EUTECTIC BONDING CYCLE ————
igure Z2—

2-122

MCDONNELL DOUGLAS ASTROMAUTICS COMPANY - EAST

Vs

lod!

.

-

el



BORON ALUMINUM FOR REPORT MDC E0825
SPACE SHUTTLE COMPONENTS : FINAL REPORT 30 JULY 1973

Because the initial results were encouraging, the evaluation was extended to
determine the interlaminar shear strength between the Ti alloy and boron-aluminum.
For these tests, specimens measuring 8.6 mm x 20.32 mm (.3 in. x .8 in.) were cut
from a multi-ply laminate and tested in three point bending (15.24 mm span}) with
the principal bending stress parallel to the fiber direction. The basic laminate
contained nineteen plies, of which three were Ti-6Al1-2S5n-Zr-2Mo alloy. These T1
Plies were located in the center of the laminate Cﬁaximum shear) and were gseparated
from each other by a single boron-aluminum ply.

Five interlaminar shear specimens were tested at room temperature. Failure
loads ranged from 5293 to 5382 N (1190 to 1210 1bs) with the average equivalent to
a nominal shear strength in excess of 110 MN/m2 (16,000 psi) at the titanium alloy
~ boron-aluminum interfaces. This shear strength exceeds the levels developed by
previous all-boron-aluminum specimens. All the specimens failed in tension and the
failures originated in the outer boron-aluminum plies at stress levels in excess
of 1103 MN/m2 (160,000 psi); hence, the maximum shear strength was not reached. On
the basis of these tests, it was concluded that titanium interleaves could be

included in a boron—aluminum laminate during a normal eutectic bonding cycle.

2.3.2 Improved Manufacturing Methods - One of the objectives of the process tech-

nology development phase of the program was to reduce costs and increase quality
through improved manufacturing methods. The three processing steps singled out for
such improvement were: (1) copper coating of monolayer foils, (2) lay-up of
structural shapes and (3) control of eutectic bonding thermal cycle. Significant
improvements were made in each of these processing steps and they will be discussed

individually.

2.3.2,1 Copper Coating - During the initial development of the eutectic bond-

ing process, the minimum copper thickness required for bonding had been defined

and a production physical vapor deposition coating facility constructed. The major
process improvement undertaken in this program was concerned with the quality of the
copper coating from the standpoint of increased ability to control thickness and
uniformity.

Such a study was considered necessary because of the importance of coating
thickness to eutectic bond quality. A certain minimum amount, about 0.3 ym (12 y-in.)
is needed to ensure that some of the coating at the surface of the monolayer will
remain after the diffusion during heating to the bonding temperature to be available

to form an adequate amount of liquid phase for bonding. On the other hand, an
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excessive amount could result in a brittle bond. A coating thickness of 0.5 um
(20 p~in.) had been previously established as a satisfactory level that would pro-

duce sufficient liquid phase without the danger of joint embrittlement. The

objective of the study was to refine the coating technique to ensure that the desired

coating thickness could be obtained consistently within narrow tolerance limits,
and that the coating would be uniform over the entire surface of each monolayer foil.
Vapor deposition of copper on boron-aluminum monolayer foils is accomplished
in a modified electron-beam welding chamber. A drum, 61 cm (24 in.) in diameter by
2.28 cm (90 in.) long, is used to hold the monolayer foils. The outer surface of
the drum is electrically insulated so that the entire outer surface on which the
monolayer foils are wrapped can be glow-discharge cleaned. A single molybdenum boat
source, positioned 30.5 cm (12-in.) below the outer surface of the drum, is kept
continuously filled with molten copper by filler wire additions. The beoat is
surrounded by a metal shield and a cut-out area in this shield limits the deposi-
tion area. An ion rate monitor is used in the system to measure evaporation rate
which is controlled by the rate at which wire is fed into the boat. This equipment

is shown in Figure 2-117,

VACUUM DEPOSITION FACILITY

Figure 2-117
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Initially, the coater was operated with the boat held stationary and the drum
rotated past the” shield cut-out while maintaining a constant evaporation rate. Two
passes of the drum were required to attain a coatinglabout .35 ym (14 uy-in.) thick.
Under this system of operation, the monolayers were located in zones along the drum,
When coating of thelmaterial within a giveh zone was completed, the boat was then

moved to the next zone without copening the chamber and the process repeated. This

method provided acceptable coating thicknesses, but over a relatively narrow width.

In order to improve the coating uniformity,'the mode of operation was changed
from the stationary boat-zone method to a traveling boat procedure. The initial
objective was to determine if this change would provide control of the coating over
a narrow thickness range. The target value selected was 0.35 to 0.50 pm (14 to 20
U=in, ).

The traveling mode of operation consists of moving the boat containing the
copper from one end of the drum to the other as the drum rotates. Approximately
25 test runs were made to develop operating parameters of boat travel speed, drum
rotational speed, power input to the boat and deposition rate. For these tests,

3 rows of 6 specimens each, located 120° apart were coated under variocus conditions
and the resulting coating thickness measured by weight change. The samples covered
46 em (18 in.) of drum length. These tests indicated that on any given rum, coating
uniformity within the 18 sample grouping did not vary more than about .076 um

(3 u-in.) with an average uniformity variation of .053 ﬁm (2.1 y=in.).

These initial test results were better than could be attained by the zone
method. In addition, the traveling mode offered the potential of plating wider
sheets of monolayer foil than could be accommodated in the zone method. While the
uniformity in the initial tests was consistent within a given run, the thickness
itself varied from run to run but could be contained in the target range of .35 to
.51 x um {14 to 20 p—-in.). This inconsistency was traced to variations in the
travel speed of the boat caused by operating the motor at the very low end of its
speed range where accuracy was not reproducible. This was overcome to some extent
by increasing the speed of the motor, changing gear ratios and depositing the
copper in multiple passes.

On the basis‘of tﬁe good results obtained during the development tests, the
decision was made to use the traveling boat mode for coating material to be used
in this program. The next step was to certify the new procedure for production.

For this purpose a coating run was made with 240 weight samples to cover a larger
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area on the drum. These 7.62 cm (3 in.) long samples were placed end-teo-end
longitudinally to cover the central 152.4 cm (60 in.) of the 228.6 cm (90 in.) long
drum. Twelve such rows of twenty specimens each were spaced at 30° intervals
around the circumference. Within the central 127.0 cm (50 in.) of the drum, coat-
ing thicknesses ranged from .36 to .40 ym (14,0 to 16.8 p-in.) for a two-pass
coating run. A similar run, made with more passes, showed good uniformity but with
the resulting coating thickness on the high side of the target range. In other
respects, the run was satisfactory.
The certification tests demonstrated that the vapor deposition equipment was
capable of depositing a uniform copper coating of closely controlled thickness.
Therefore, the travelling boat mode of operation was selected to be used for the
remainder of the program. In order to check coating thickness on each run, seven
weight samples are included with each drum load. These samples are commercial
aluminum kitchen wrap cut into samples 51 cm x 76 cm (2 in. x 3 in.) and randomly
distributed on the coating drum. The material coated for the compression panel
was specified to meet the following conditions:
a. The average coating thickness based on all seven weight samples must
fall between .44 and .57 ym (17.5 and 22.5 p-in.)}.

b. The coating thickness on. any one sample could not exceed .67 um
{(26.5 p-in.).

¢. The coating thickness of any one sample could not be less than .34 um
(13.5 y-in.).

The coating thickness requirements were met during the produection phase with
little difficulty., This is shown in Figure 2-118 wyhich represents an analysis of
coating thickness control during the first 63 coating runs on monolayer foil used
in the full size panel. The average of all weight specimens (441 total) was .497
um (19.57 p-in.) which is very close to the middle of the specified range. BSixty
of the individual runs (35%) met the requirements for average thickness and
the remainder exceeded the upper or lower bound by less than 6%. Of all the first
sixty-three runs, the upper or lower limits specified for single specimens were
exceeded only twice and in both cases by .025 uym (1 p-in,) or less.

This analysis demonstrates that coating thickness can be closely controlied
although some average run-to-run variation within a narrow range can be expected.
No requirements were specified to ensure a minimum variation among the seven
specimens from the same coating run. However, coating parameters were selected to

reduce the variation within the individual groups, with the objective of heolding
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. MAXIMUM ALLOWABLE THICKNESS FOR SINGLE SPECIMEN IN GROUP
OF SEVEN PER RUN ~0.67 um (26.5 u -IN.)

o MINIMUM ALLOWABLE THICKNESS FOR SINGLE SPECIMEN IN GROUP OF
SEVEN PER RUN =0.34 pm (13.5p -IN.)

— ‘ __ALLOWABLE RANGE OF AVERAGE OF SEVEN SPECIMENS PER RUN
T =044 «0.57 um (17.5-22.5 s -IN.) = ACHIEVED 93.7% ALL RUNS
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COATING THICKNESS ~u -IN.

RESULTS OF WEIGHT CHANGE QUALITY CONTROL SAMPLES SHOWING

RUN-TO-RUN VARIATION IN COPPER COATING THICKNESS ON B/AL MONOLAYER
Figure 2-118

this variation to .10 um (4 u-in.) or less. The frequency distribution eof this
difference for all sixty-three runs is shown in Figure 2-119 . These data show
that the average of all runs was .07 um (2.9 u-in.); 86% showed a variation of

less than .1 um (4 p-im,}.

The sixty-three runs described above are typical of the thickness and uni-
formity observed throughout the program. The change in technique which resulted
in this improvement also reduced costs by virtually eliminating the need for re-
work and reducing the overall time required for coating.

2.3.2.2 Layup Techniques - A principal advantage of fabricating structural

shapes from individual monolayer foils is the versatility this approach offers for
producing complex shapes of varying thickness. At the onset of this program, lay-
ups of this type were made by hand-forming each ply over a shaped tool. This pro-
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cedure was costly and the quality of the finished parts was questionable because
good contact between adjacent layers was not always attained. Therefore, a study
was undertaken to develop layup procedures that would reduce costs and improve
quality. At the same time it became necessary to further increase the versatility
of the monolayer approach to permit the inclusion of local reinforcement in the
form of titanium interleaves. The use of individual monolayers was ideally suited
to interleaving, but hand layup techniques were not because of the springback
characteristics of titanium.

The need for an improved process led to the development of a mechanical
forming procedure. This concept, shown schematically in Figure 2-120 utilizes a

flat layup consisting of a cover sheet and slip and spacer sheets as well as the
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boron-aluminum interleaved with titanium. This entire pack is formed as a single
unit and the forming pressure maintained until the cover sheet 1s welded to the

bonding tool and the pack evcuated.
' FORMING TOOL

APPLIED LOAD 60 DU RIBMETER

RUBBER

APPLIED LOAD
B/AL LAYUP <
N
COMPRESSED
£0 DURONMETER
RUBBER—
/—aonnmc TOOL

AR LS SR RN

R R
a) Before Forming b) After Forming

A FLAT PACK LAY-UP IS MADE CONSISTING OF COPPER-COATED BORON/ALUNINUM MONOLAYER FOILS,

TITANIUN FOIL INTERLEAVES,STOP-OFF COATED SLIP SHEETS AND AN OUTER ENVELOPE SHEET. THIS

LAY-UP IS THEN PLACED IN A BRAKE PRESS ON THE BONDING TOOL AS SHOWN IN (a). PRESSURE THEN IS

APPLIED AS IN (b} TO FORM THE ENTIRE LAY-UP. FORMING PRESSURE IS MAINTAINED WHILE THE OUTER

ENVELCPE SHEET IS WELDED ALL AROUND THE PERIPHERY OF THE BONDING TOOL. THE INTERIOR OF

THE WELDED PACK IS EVACUATED AND THE FORMING PRESSURE THEN RELEASED. ATMOSPHERIC

PRESSURE HOLDS THE LAY-UP TO THE TOOL AND PREVENTS SPRINGBACK OF THE B/AL AND TITANIUM

FOILS. h

MECHANICAL FORMING OFFERS THE FOLLOYING ADVANTAGES:

1. SUBSTANTIAL REDUCTION OF LAY-UP COSTS

2. HIGHER QUALITY OF FINAL PRODUCT BY VIRTUE OF BETTER CONTROL OF RADIUS CONTOUR AND
CONTACT BETWEEN PLIES

3. PERMITS INCLUSION OF TITANIUM ALLOY INTERLEAVES - SPRINGBACK OF TITANIUM CANNOT BE PREVENTED
IN HAND LAY-UP GPERATIONS.

PROCEDURES FOR MECHANICALLY FORMING B/AL STRUCTURAL SHAPES

PRIOR TO EUTECTIC BONDING
Figure 2-120

Several small hat-section test assemblies were fabricated with prototype
tooling to develop tooling shapes, materials, etc. These parts were complex in
that thickness was varied by terminating plies externally and titanium alloy inter-
leaves were included. Some of the titanium plies were continuous while others
were terminated internally at an abutting boron-aluminum ply. These conditions

duplicated designs that were being considered for the compression panel, Metallo-
A
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graphic examination of these test assemblies, which were bonded in the conventional
manner after forming, showed them to be of high quality with good contact between
adjacent plies. On the basis of the good results obtained on the subsize assembl-
ies, mechanical forming was selected for use in fabricating the stringers for the
test components and full-size compression panel. A typical stringer cross-section
is shown in Figure 2-121, The development of mechanical forming represents a signi-
ficant advance in boron-aluminum fabrication. Mechanical forming, followed by
eutectic bonding or some other low-pressure, liquid-phase bonding system, permits
the fabrication of thick, complex structural shapes which vary in thickness and
incorporate titanium interleaves. Such assemblies cannot be fabricated by other
manufacturing methods,

2.3.2.3 Bonding Cycle Control - The fiber degradation studies conducted to

support the optimization of the eutectic bonding process showed that some de-
gradation could be expected as a result of bonding but that the degree could be
minimized by controlling the thermal cycle, On the basis of these studies, para-
meters were established for the bonding cycle to limit the degradation to an ac-
ceptable amount, The lower temperature limit was established at 827°K (1030°F)
with the time at this temperature not to exceed 15 min. An upper limit of 844°K
(1L060°F) was selected with the time at this temperature not to exceed 7 min,

In order to achieve the degree of control needed to meet the selected bonding
cycle parameters, an on-line, closed-loop, proportional control system was added
to the bonding furnace. This furnace has six independently controlled zones, each
of which is programmed to provide the same cycle of heating rate, maximum tempera-
ture, and time at temperature.

After this improved control system was added to the furnace, a series of
calibration runs were made. These tests showed the system capable of producing
actual time-temperature cycles that fell within the specified 1imits, As a result,
this system was used for the bonding of mest of the element test specimens, the
component test assemblies and the full size panel.

Generally, the amount of degradation which occurred during the over-all
program was less than predicted on the basis of the fiber degradatien studies.
This was demonstrated by quality control specimen test results. Each bonding run
contained tensile-test samples which were eutectically bonded along with the com-
ponents in the pack. These tensile specimens had filaments in common with material
tested in the as-received condition. A direct comparison of tensile strengths

before and after bonding was made for each run. The results of the test specimens
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from the first 35 runs made after the installation of the improved controls are
shown in Figure 2-122, These data show that the average bundle strength of all the
runs was well above thg predicted value based on the filament degradation studies
(Figure 2-115). Also, less than the minimum expected amount of degradation was
observed in more than 60% of the runs. These results demonstrate that the improved
control system, with few exceptions, does maintain the eutectic bonding cycle with-

in the desired limits.
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AVERAGE FILANMENT BUNDLE STRENGTH AFTER BONDING

STRENGTH OF BORON FILAMENTS AFTER EUTECTIC BONDING BASED ON

TENSILE SPECIMENS BONDED WITH PRODUCTION PARTS F » 129
igure 2—

2.3.3 Metallurgical Joining Development — One of the tasks in the process develop-

ment phase was to evaluate metallurgical joining methods that might be applied to
the compression panel, truss beam or shear web to be designed in Phase II of this
program, Two processes expected to have wide application in fabricating boron-
aluminum structures are brazing and resistance spotwelding. Therefore, these

processes were selected for a preliminary evaluatiom.
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2.3.3.1 Resistance Spotwelding - Resistance welding and weldbonding investi-

gatlons were conducted on boron-aluminum composite for possible application to the
compression panel skin-to-stringer joints. Weldbonding is a combination of
resistance welding and adhesive bonding developed to improve fatigue properties.
Most weldbonding studies have utilized epoxy type adhesive because the design
temperatures were less than 422°K (300°F). These adhesives would not withstand
the 589°K (600°F) compression panel test temperature sc a commercial polyimide
adhesive, BR-34, was selected to provide high temperature properties needed for
this program,

Preliminary resistance welds were made in 2.29 mm (0.090 in.) thick 1100
aluminum to establish a weld schedule, Weldbonds then were made in 1100 sheet.
Just prior to welding, the adhesive was applied to the faying surfaces of joints
and the welds were made with the schedule developed for conventional resistance
welding, Control specimens which had been adhesive bonded only also were prepared.
The cure cycle consisted of heating at 450°K (350°F) for 1 1/2 hour in vacuum under
a positive pressure of 275.7 MN/m2 (40 psi), After cooling to room temperature,
the specimens were reheated to 574°K (575°F) for 2 hours. The failure lpoads of
all of the joints - resistance welded, weldbonded and adhesive bonded - were
comparable and the shear strengths of the adhesive bonded and weldbonded jolnts
were comparable. The weld strengths were well above the minimum average specified
in MIL-W-6858.

Preliminary resistance welds then were made in & ply 0,86 mm (0,031 in.) and
8 ply mm (0.060 in) thick boron-aluminum composite eutectic bonded laminates.
Excellent resistance welds were obtained with no apparent difficulties provided
the basiec composite monolayer was satisfacteorily diffusion bonded. Weld strengths
obtained in establishing weld schedules are shown in Table 2-3, These strengths
were also above the minimum averages specified for 1100 aluminum in MIL-W-6858.
Attempts to weld material with marginal diffusion bonds resulted in melting of the
spot area near the electrode and delamination of the composite along the diffusion
bondline,

Preliminary weldbonds and adhesive bonds also were made in 4 ply 0.86 mm
(0.031 in.) thick boron-aluminum composite. Weldbonded specimens were made using
the resistance weld schedules developed for the boron-aluminum composite, All the
other procedures and cure cycles were the same as those used for the 1100 aluminum.

Shear strength tests made on the specimens resulted in fractures of the composite

2-133

MCDONNELL DOUGLAS ASTRONAUYICS COMPANY - EABST



BORON ALUMINUM FOR REPORT MDC E0825

SPACE SHUTTLE COMPONENTS FINAL REPORT 30 JULY 1973

. SPEC. MIN. FOR

NO. OF THICKNESS TEST FAILURES EQUIV. ALUMINUN,

pLigs | ORIENTATION

mm | (N) | NAPOT | (LB/SPOT) | N/SPOT | (LB/SPOT)

4 [+ 076 | (0.303) | 1334-1557 | (300 ~ 350) 934 (210)

8 [+455] g 1.52 | (0.060) | 3114-3558 | (700-800) 2202 (495)

5 | 190, Tl 097 | (0.038) | 2224-2758 | (500-620) - -

10 [(Ti, 45,455, 45| 193 | (0.076) | 60056450 | (1350-1450) - -

STRENGTH OF RESISTANCE WELDS IN

EUTECTIC BONDED BORON-ALUMINUM COMPQSITE b2

material away from the joint or by delamination along diffusion bondiines in the
joint area., These latter fallures were attributed to unsatisfactory diffusion bonds
in the initial monolayers., However, these preliminary tests indicate that the
composite material can be resistance welded either with or without the use of the
high temperature polyimide adhesive.

The possibility of spotwelding boron-aluminum laminates which contained .20 mm
(.008 in,) thick titanium alloy interleaves was investigated also. These studies
included tests on material with the titanium sandwiched between the boron-aluminum
and also with titanium on the outer surface of the laminates. Good results were
obtained under both conditions (Table 2-3),

Although preliminary tests showed that boron-aluminum, both with and without
titanium interleaves, can be readily joined by resistance welding methods, this
procedure was not applied to the fabrication of the compression panel, The config-
uration of the panel precluded its consideration for two reasons. First, at the
point of load introduction, the skin and stringer are about 12,7 mm (.5 in.) and
10.2 mm (.4 in.) thick respectively; this combination could not be readily joined
with welding equipment available at MDC-St. Louis. In addition, both the skin and
stringer thickness vary along their length, requiring the development of a very
large number of welding schedules and new welding techniques. Such a study was
beyond the scope of the program. For these reasons, resistance welding was not

selected for the compression panel design.

2,3.3.2 Brazing Feasibility Study - The high modulus of elasticity of boron-

aluminum makes it an attractive candidate for honeycomb sandwich structures.

Therefore a study was undertaken to determine if such structures could be fabricated
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by brazing BfAl face sheets to Ti-alloy homeycomb .core, An additional objective
was to demonstrate that the multi-ply facing sheets could be joined by eutectic
bonding during the brazing cycle. To accomplish this, a brazing alloy was needed
that would melt and flow within the eutectic bonding temperature limits. There-
fore, hoth commercial and experimental Al-base brazing alloys were evaluated for
potential application to boron-aluminum/titanium honeycomb structures.

The brazing alloy study included Al-Si-Cu, Al-Cu-Mg and Al-5i-Zn-Cu alloys
which were compared on the basis of their flow temperature and ability to wet 1100
aluminum, Several compositions were found that had the desired characteristics.
Of these, the commercial alloy designated 719 by Alcoa was selected for further
evaluation. The nominal composition of this alloy is Al1-10Si-10Zn-4Cu and it ‘
melts within the temperature range from 788° to 839°K (960° to 1040°F).

In the final stage of the brazing study, small honeycomb samples were prepared
by eutectic bonding the boron-aluminum facing sheets while brazing the face sheets
to the titanium alloy core. Figure 2-123 shows a section of one cof these samples
which consists of 4 ply (+45°) face sheets, Ti-3A1-2.5V alloy core, 19 mm (.75 in.)
thick, and a titanium edge member, Five day salt spray tests were conducted per
Fed. Std. 151, Method 811.1 on a similar section, There was no visual evidence of
braze joint deterioration, These tests demonstrated that boron-aluminum can be
used to fabricate honeycomb sandwich and applied teo strﬁctures such as the shear
web (Phase II)., The braze approach utilizing titanium alloy core could provide
elevated temperature capability for these structures.

2.3.4 Preparation of Process Specifications - During the initial stages of this

investigation a major portion of the effort was directed toward process develop-
ment., The major objectives of this phase were accomplished well before fabrication
of test components or the compression panel was begun; hence, the improved processing
was used for the successful fabrication of these major structures. The incorporation
of the improved processing was accomplished through the preparation and application
of several process specifications.

Three basic specifications were prepared. The first was MDC-5t. Louis
Specification PS 12071, "Cleaning Boron Filament-Aluminum Matrix Composite Foil".
This specification was based on the cleaning optimization studies and the solu-
tions and immersion times found to be the most suited from the standpoint of
oxide removal and dissolution rate are included together with requirements to

prevent contamination during handling and storage.
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EUTECTIC BONDED FOUR PLY BORON/ALUMINUM FACE
SHEETS BRAZED TO TITANIUM CORE. ALL BONDING
COMPLETED IN ONE THERMAL CYCLE

Figure 2-123

The second specification, PS 13130, "Vacuum Deposition of Copper on Boron
Filament-Aluminum Matrix Composite Foil" outlines certification procedures for
both the coating process, which includes glow discharge cleaning, and operators.
Quality control procedures to ensure proper coating thickness and adherence are
included. Storage requirements based on the ellipsometry evaluations of oxide
built-up on cleaned and on coated surfaces.

Eutectic bonding time and temperature parameters, selected on the basis of
fiber degradation studies are covered in PS 22617 (Preliminary) - "Eutectic Bonding

of Boron Filament - Aluminum Matrix Composite Foil Assemblies',
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2.4 Fabrication and Assembly

2.4.1 General - Fabrication and assembly in Phase IV consisted of the manufacture
of gelected items designed in Phase II for test. These items were: (1) Component
Test Panel Test Assembly, (Z)ﬁStringer Test Assembly with typical splice joint,
and (3) the Compression Panel. ' '

The 1.22 m x 1.83 m (4 ft x 6 ft) compression panel design required fabrica-
tion of skins. and hat section boron-aluminum stringers with interleaves of titanium,
tapered in thickness and using the eutectic bonding process. Thicknesses of the
stringers ranged from 5 plies to 52 plies and the skin thickness varied from 10
plies to 62 plies. Assembly of the panel component parts was accomplished by using
Hy-Lok fasteners and ofher standard aerospace bolt-nut combinations. All the
above test assemblies were successfully fabricated and delivered to the respomsible
test agencies (MDC or NASA).

Boron-aluminum composite foil material used in this phase was of good guality,
readily fabricable; however, bilayer material used in the panel skins was found to
have a pronounced tendency to separate at the diffusion bonds during machining
operations. The diffusion bond deficiencies of the bilaver material could not be
determined in standard quality control material tests; consequently, bilayer usage
was restricted to noncritical applicatioms for the remainder of the program.

Manufacturing and quality assurance procedures followed on this program
are illustrated on the flow chart presented in Figure 2-124. As evidenced by the
chart, frequent inspection steps during fabrication assured quality workmanship
for the complex assemblies for this program.

2.4.2 Tooling - Major tooling required for this phase consisted of tools for
eutectic bonding the panel skin and hat section stringers and a mechanical forming
tool for forming the stringers.

An existing MDC tool was used for eutectic bonding the panel skins. This
tool is essentially a large flat, stainless steel plate with stiffened egg crate
type support structure as shown in Figure 2-125,

For the hat section stringers, a double sided hat stainless steel tool shown
in Figure 1-126 was constructed. The tool is of balanced construction to minimize
thermal distortion during the bonding cycle. A tool for mechanical forming
resulting from studies reported in Section 2,3,3.3 was also constructed (Figure

2-127) which enabled forming the stringer ply layups directly onto the bonding
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tool prior to the bonding cycle. Heat surveys conducted on the bonding tools
proved temperature response and thermal gradient acceptability and determined the

control settings for semiautomatic control of the cycle.

MDAC - EASY :

STRINGER FORMING TOOL Eigiiie 2-127

2.4.3 Lay-Up Technique - The varying thickness and the large number of plies (up

to 62 plies) of the panel skin required lay-up procedures that would insure proper
orientation and fitting of plies. To accomplish this, the skin assembly was
divided into subassemblies of four plies each. The detail plies were fitted and

poke welded together in the conventional manner to form the subassemblies; these

subassemblies were then fitted and poke welded together to complete the skin lay-up.

Mylar templates such as shown in Figure 2-128 were used to aid in the location,

ply orientation and inspection to assure proper lay-ups.
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Lay-up techniques for the hat sections were greatly simplified by the mechanical

REPORT MDC E0825
30 JuULY 1973

Figure 2—128

forming process as the lay-up portion only involved stacking of a flat pack which

would subsequently be mechanically formed. A typical flat pack lay-up for a

stringer prior to forming is illustrated in Figure 2-129,

STRINGER FLAT PACK LAYUP DETAILS
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2.4.4 Mechanical Forming - Assurance of intimate contact between the plies for

bonding in shaped parts and the varying thickness of the hat section stringers

(up to 52 plies including "hard-to-form" titanium interleaves) led to the development
of a mechanical forming technique as described in Section 2.3.2.2 to replace the
marginal hand forming and fitting process previously employed. All hat section
stringers fabricated during this phase used this forming technique and resulted

in well-bonded, controlled shapes.

2.4.5 Bonding Cycle - All bonding was performed in an autoclave under a nominal

2wl MN/m2 (300 psi) pressure using a large tube furnace for heating. The bonding
cycle was automatically controlled as developed to conform to process standards

set by project engineering. The tube furnace and autoclave are shown in Figure
2-130. The first stringer fabricated for the program was found to be deficient in
accomplishment of the eutectic bond. Resultant investigation revealed that
defective thermocouple readouts had indicated higher temperatures than were actually
experienced; hence, sufficient temperatures were not achieved during the cycle for
a well-bonded part. This discrepancy was corrected and with the institution of an
automated bonding cycle; all cycles thereafter were controlled to within specifica-

tion requirements and resulted in generally well-bonded parts.

BONDING FURNACE AND AUTOCLAVE

Figure 2-130
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2.4.6 Machining and Drilling - Emphasis in this program was placed on improvement

and applicability of machining techniques to the more complex composite containing
titanium interleaves. The addition of titanium to the composite was found to have
little effect on the méchining characteristics of the candidate techniques selected
for this program.

. The primary machining method selected for this program was ECG (Electro Chemical
Grinding), supplemented where necessary by grinding with a diamond impregnated disc.
A Marwin router converted for use with the ECG process resulted in significant
improvement of the machining operations as compared to the modified Bridgeport mill
previously used. The router was modified to include a large work table and a
variable 0O to 51 cm/minute (0 to 20 inches per minute) feed system. Machining
operations on the compression panel skin using the ECG process on the Marwin router
are shown in Figure 2-131 with a hat stringer machining shown in Figure 2-132, With
these modifications, improvements in the machining quality, setup time and feed
rate were realized. The parameters used were:

Electrolyte - Sodium Nitrate (NaNO3) .9 kg per 3.78 1 (2 lbs per gal) of H,0

Wheel - .36 m (14 in.) Metal Bonded Diamond

Voltage - 6 Volts

Current - 200 to 250 amps (maintained by adjusting the feed rate)

Feed Rate - 2.5 to 25 em (1 to 9 in.) per minute dependent on material

configuration.

The relatively thick sections of boron-aluminum composite with titanium inter-
leaves in the test articles necessitated re-evaluatingof candidate drilling
techniques. Drilling investigations conducted on manufacturing test plans resulted
in the selection of the Branson ultrasonic unit using diamond core drills as the
most promising technique. This unit required very rigid mounting, necessitating a
stationary location, consequently requiring the work piece to be moved into position
for the drilling operation. Although the drilling time and drill life with this
method was superior to other methods and provided the means for drilling the thick
composite sections, this technique was discarded during the fabrication of the
Component Panel Test Assembly as attempts to make the unit portable were not
successful and setup time using the rigidly mounted drill unit was prohibitive. A
DeSoutter rack feed drill unit (Figure 2-133) providing a semiportable drilling
operation was evaluated using high speed steel drills and, although an approximate
usage of one drill per hole was experienced, the total of the drilling and setup

time was substantially reduced. With this method, an acceptable hole could be
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Figure 2-131
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ECG MACHINING OF HAT STRINGER

Figure 2-132
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generated in the assembly within two minutes. This technique was adopted and proved

reliable and efficient in the remaining assembly work.

=

RACK FEED DRILL SETUP Figure 2133

2.4,7 Stringer Test Assembly — This was the first article fabricated for this

phase consisting of a boron-aluminum stringer similar to the outboard stringer of
the compression panel with an eight ply iﬁ% rad (+45°) boron-aluminum skin and a
load introduction stringer of sheet metal design. A typical splice joint fitting
similar to the compression panel joint design at the load reaction end of the
stringer was included to prove the joint design of the compression panel. This

assembly as fabricated is shown in Figure 2-134.

2.4.8 Component Panel Test Assembly - The Component Panel Test Assembly, identical
to the first bay of the Compression Panel, was fabricated next. This panel repre-
sented the more difficult fabrication and assembly tasks associated with the Com-
pression Panel as it involved complex lay-ups of stepped (tapered) construction
and large numbers of plies in hoth skin and stringers. The hat stringer and skin
detail parts are pictured in Figures 2-135 and 2-136 with assembled panel views
shown in Figures 2-137 and 2-138. A close-up of the load introduction is
as shown in Figure 2-139 with the thrust post as assembled as well as the stepped
detail of the skin detailed in Figure 2-140. Fabrication of this assembly proved
lay-up and assembly techniques and provided experience for production personnel
for the full compression panel fabrication task.
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STRINGERS FOR COMPONENT TEST PANEL
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SKIN-COMPONENT TEST PANEL
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LOAD INTRODUCTION AREA — COMPONENT TEST ASSEMBLY

THRUST POST AREA - COMPONENT TEST ASSEMBLY
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2.4.,9 Compression Panel - After test results of the Stringer Test Assembly and

Component Panel Test Assembly units confirmed the panel design, fabrication of

the 1,22 x 1.83 m (4 x 6 ft) compression panel was initiated. Manufacturing
techniques and assembly procedures for the thick and tapered composite details of
the two test component proved rellable for the large panel enabling the fabrication
and assembly to proceed routinely to completion. The completed panel as viewed from
the skin side in FIgure 2-141 illustrates the precision stepped details of the
large skin as assembled with the thrust post and conventional support frames.

The tapered and variable thickness hat section stringers are evident in Figure
2-142 yiewing the panel from the stringer side. The load introduction and load
reaction ends of the panel are shown in Figures 2-143 and 2-144, respectively,
where the thicknesses and built-up assembly of the details are emphasized including
the production gplice closeocut fittings,

The fabricated structure is sound and well-bonded with the exceotion of edge
delaminations located in the diffusion bonds of the skin bilayer material. These
delaminations were discovered during machining of the skin after bonding,.
Ultrasonic C scans indicated these delaminations to be in localized areas at
the skin edges. Analysis indicated that since the skin in this area ia well

supported by the hats and mechanical fasteners, the discrepancies were acceptable.
Further, the ultimate strength of the panel would not be degraded.

It is believed that these defective diffusion bonds in the bilayer material
existed in incoming material as supplied by Amercom, Inc., but were not discoverable
using available material inspection techniques. It is the nature of multilayer
diffusion bonded material to form a mechanical lock between the foil and filaments,
making detection of lack of diffusion bond (especially when the joint is tight)
very difficult. The decision was made to limit the use of the bilayer material to

noncritical applications for the remainder of this program.
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LOAD REACTION END — COMPRESSION PANEL

Figure 2-144
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2.5 Phase V — Test and Evaluation
The 1.22 m (48 in.) by 1.83 m (72 in.) boron-aluminum Compression Panel

contains many unique design features including titanium interleaves, internal

and external boron aluminum ply terminations, and tapered thickness stringers

and skin. In addition, the concentrated ioad applied at one end reacted by a
uniformly distributed load at the opposite end causes complex internal loads.

No composite structure has been designed and tested for shear lag loading in the
past, particularly at an elevated temperature of 589°K (600°F). For these reasons,
it was advisable to fabricate and test structural components which verified primary
structural features of the Compression Panel. Two components were chosen. One
was a stringer assembly to demonstrate the overall axial compressive strength

of a long element of the panel. The Stringer Test Assembly is described in
Section 2.5.1. The other structural test article was a Component Panel Test
Assembly which is an exact duplicate of one-third of the Compression Panel at the
concentrated load end. Test of the Component Panel Test Assembly verified internal

loads distribution. Component Panel test results are described in Section 2.5.2.
English units have been used in illustrations for Sectioms 2.5.1 and 2.5.2 for

clarity,
2,5.1 Boron Aluminum Stringer Test Assembly ~ The three spanl1l.83 m (72-in.) long

tapered boron aluminum stringer column specimen shown in Figure 2-145 was selected.
to verify the design and analysis of stringers on the Compression Panel, The
stringer for the Stringer Test Assembly is identical to the outboard stringer of
the Compression Panel., This specimen was successfully tested at room temperature
to 355 kN (80K) and 445 kN (100K) during two different loading sequencés without
failure. Axial load was applied to the unidirectional boron aluminum stringer of
this test assembly by panel shear using a 12 ply +n/4 rad (+45°) boron aluminum
skin. It will be shown that the 455 kN (100K) load level demonstrates ultimate
strength'of the outboard stringer on the compression panel when loaded to the
ultimate design load at 222 kN at 589°K (600°F), 1In addition, this is the first
major boron aluminum test article to utilize titanium interleaves eutectically
bonded to the boron aluminum. Results of this test showed that the use of
titanium interleaves significantly increased shear strength and bearing strength

of unidirectional boron aluminum stringers.
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« VERIFY THAT TITANIUM INTERLEAVES INCREASE IN-PLANE SHEAR STRENGTH
« VERIFY THAT TITANIUM INTERLEAVES INCREASE BEARING STRENGTH

STRINGER ASSEMBLY AIDED EVALUATION OF COMPRESSION PANEL DESIGN
Figure 2--145

Design loads at 589°K (600°F) for the outboard stringer on the compression
panel are shown in Figure 2-146, The maximum shear flow occurs approximately
50.8 cm (20 in.) from the unloaded end of the stringer, while the maximum axial
compressive load occurs at the stringer closeout. The small predicted shear
flows shown for the area near the distributed load end of panel indicate that the
internal leoads distributiom required to achieve a nearly-uniform ultimate reaction
load (222 kN, 50,000 1b per stringer) has been accomplished in less than the full
panel length.

Analysis showed that a unidirectional boron aluminum stringer, if sized to
carry only the axial compressive load, would possess insufficient in-plane shear
strength to carry the shear loads. Therefore, one 8 mil titanium ply was added
over the entire length and a 38.1 em (15 in.) long ply was added near the thin

end of stringer as shown in Figure 2-147, The allowable shear flow which can be
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applied to a stringer with boron aluminum plies only and to a boren aluminum
stringer with tit&nium interleaves is shown in Figure 2-148, Additional titanium
plies are used at the opposite end to provide sufficient bearing strength for
the closeout fitting loads. Note that some of the boron aluminum and titanium
plies are terminated internally. The terminations are staggered a minimum of
1.27 Cm_(.SO in.). The external ply terminations were selected to meet the axial
load and stiffness requirements of stringer.

All attachments have been made using HI-LOK mechanical fasteners. The lateral
frames.arersfeel channel members and the closeout fitting is a machined steel
part attached to the boron aluminum stringer with 25 fasteners. Figure 1-149 shows
the boron aluminum stringer assembly located in test machine. Note the turn
buckle arrangement used to provide lateral support without restricting axial

motion of the stringer. .
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The assembly was loaded twice at room temperature without failure. During
the first test, the maximum axial load applied to the stringer was 355 kN (80K).
In the second test, the maximum load was 445 kN (100K). When the stringer suc-
cessfully carried 445 kKN (100K) at room temperature, ultimate strength was
demonstrated of a similar stringer on the compression panel at 589°K (600°F).
Strain gages for the stringer assembly were located as shown in Figure 2-150,
In addition, three deflection gages were located midway between each frame for
recording deflection of the stringer normal to the skin. A fourth deflection

gage was used to record overall shear deformation of the panel.
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|
p o op
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i \ s ! !
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u .
A
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/
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t \
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FRONT N U BACK
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STRAIN AND DEFLECTIUN GAGES MONITOR RESPONSE DURING TEST
Figure 2150
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The uniaxial strain gages located on the stringer cross—section were used to
determine the presence of bending as well as axial load. Figure 2-151 shows strain
readings taken from thfee such gages located 30.5 cm (12 in.) from the highly
loaded end of the stringer. A predicted load-strain curve for the stringer under
pure axial load is shown also. There was -considerable difference between the com-
pressive strain measured by the gage on the crown of the stringer and the gages
located near the attachment legs, indicating that the stringer cross section was

subjected to bending as well as axial load.

100

90

80

——l—

X= )
- (@ X=60IN

TOTAL LOAD, P — 1000 LB
=

®
T
i
1
1
.
1
1

1 ! ] | ] | | J
00 500 1000 1500 2000 2500 3000 350C 4000

STRINGER COMPRESSIVE STRAIN ~ . IN/IN

STRAIN GAGE DATA SHOW STRINGER BENDING STRESSES Eiure 2-151
igure 2—

Figure 2-152 jllustrates the stringer deflected shape under 445 kN (100,000
1bs) load. The high bending strains in the thick end of the stringer were
attributed to an initial curvature in the stringer caused either during stringer
fabrication or induced into the specimen by the lateral support adjustment struts
in the test setup. It can be shown that an initial eccentricity of .10 em

(.04 in.) is sufficient to produce the bending strains observed during this test.
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DEFLECTION GAGES VERIFY STRINGER BENDING
Figure 2152

Figure 2-153 ghows the 589°K (600°F) predicted axial load curve used to
design the stringer on the compression panel. Also shown is the allowable load
curve for the stringer based on recent crippling tests. The allowable load
curve markedly exceeds the predicted curve at most locations due to improvements
in actual crippling stremgth over predicted values uséd to design the stringer.

The lower portion of Figure 2-153 shows the room temperature axial loads
carried by the stringer during the actual stringer assembly test along with the
allowabie load curve based on recent room temperature crippling tests. With
445 kN (100,000 1b) load on the assembly, the loads in the thin end of the
stringer were almost the same as the allowable loads. The stringer did not fail
at this load level. The critical region on the stringer during test is about
the same as expected for the stringer on the compression panel. It occurs
approximately 50.8 em (20 in.) from the thin end of the stringer.

Figure 2-154 illustrates the use of titanium interleaves to increase the

allowable fastener load in the leg of the stringer. The load introduced at the
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ULTIMATE COLUMN STRENGTH OF BORON ALUMINUM STRINGER VERIFIED BY TEST
Figure 2-153
fastener is reacted by both the boron aluminum and titanium and must be sheared
into the main portion of the stringer. Since the titanium shear allowable is
considerably above that of the unidirectional boron aluminum, the shear-out
strength of the joint is greatly increased.

The stringer closeout fitting, Figure 2-155 simulates a typical load intro-
duction splice joint. All loads in the stringer are transferred to the end
fitting through 25 fastemers. In this case, loads are applied to the fastener on
both sides resulting in a double shear condition for the boron aluminum stringer.
The end fitting extends beyond the panel skin and stringer to ensure that-the
entire load in the assembly is reacted at the steel end fitting.

Predicted fastener allowables for unidirectional 0 rad (0°) boron aluminum
are shown in Figure 2-155. Also, curves are for boron-aluminum only and for boron-

aluminum combined with five, ,0203 cm (.008 in.) thick annealed 6Al-4V titanium
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TITANIUM AND BORON ALUMINUM SHARE FASTENER BEARING LOADS

(Single Shear) Figure 2—154

plies. The latter curve applies to stringer closeout fitting region where 5
titanium plies are used.

The point designated closeout fitting represents the load experienced by
each of the 25 fasteners in the closeout region of the stringer when the total
load was 445 kN (100,000 ib). This assumes each fastener is carrying an equal
portion of the total load. Since no failures occurred in the stringer, predicted
ultimate strength of the joint was not completely proven.

The other point shown represents the average of three unidirectional boron
aluminum, titanium interleaf lug tests at room temperature. The actual lug
specimens were made up of 28 plies of 0 rad (0°) boron aluminum and eight,

.0304 cm (.012 in.) thick titanium plies. Their average failing load was 62.3 kN
(14,000 1b). To plot these results on this curve, the failing load and number of
boron aluminum plies was scaled down so that the thickness of titanium was

equivalent to five, .0203 e¢m (.008 in.) thick titanium plies.
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In summary, a considerable amount of significant data was obtained from
the stringer assembly during fabrication and test. Fabrication procedures neces-
sary to construct a long stringer with tapered thickness and containing titanium
interleaves were developed, In addition, several structural features incorporated

in the stringer were demonstrated including the following:
o Unidirectional boron aluminum can be used as stringers
o Titanium interleaves increase in-plane shear strength
o Titanium interleaves increase fastenmer bearing strength.

2.5.2 Boron Aluminum Component Panel Test Assembly - The Compression Panel will

experience very high internal shear and compressive loads when subjected to the
concentrated ultimate load of 1.55 MK (350K) at 589°K (600°F). Since no composite
structures have experienced this type of loading and the unique design features
incorporated in the panel had not been proven, the component panel shown in
Figure 2-156 was fabricated and tested., This component panel, .61 m (2 ft) long
and 1.22 m (4 ft) wide, is an exact duplication of the highly loaded Compression
Panel first bay. Seven unidirectional boron-aluminum stringers carry the axial
compressive load and a i;% rad (+45°) cross-plied skin carries the shear load.
With the exception of the centerline stringer which is constant thickness in this
bay, both the stringers and skin are tapered in thickness to achieve an efficient
design.

Very high shear loads exist in this bay of the Compression Panel. Unidirec-
tional boron-aluminum stringers sized to carry axial compressive loads possess
insufficient in-plane shear strength to carry the applied shear loads. Therefore,
8 mil titanium interleaves were added to the stringers to provide the required
shear and bearing strengths as shown in Figure 2-157. The titanium interleaves
and boron-aluminum plies are eutectically bonded simultaneously in one operation.

The component panel skin is shown in Figure 2-158. It is made up of both
i-% rad (+45°) boron-aluminum plies and some titanium interleaves. Skin thick-
ness is designed to carry the shear flow occurring at various locations on the
panel. All tapering of the skin occurs on one side. Skin thickness varies from
a maximum of 58, i;%—rad (+45°) boron-aluminum plies with four additional titanium
interleaves at the load introduction end to a thickness of 8 i_i-rad {(+45°)

A
boron aluminum plies with two additional titanium interleaves at the distributed

load end of panel in the outboard bays.
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Two separate tests were conducted on the panel. During the first test con-
ducted at room temperature, the maximum applied load was 1.33 MN (300K) to check
out overall test setup and load distribution. In the second test conducted at a
temperature of 589°K {600°F), the panel actually was tested to 1.78 MR (400K) or
115% of design ultimate load. Examination of the panel after test showed indica-
tions of the beginnings of crippling failures on the outboard stringers. These
can be observed in Figure 2-15% which shows the panel in the test machine after
test.

Figure 2-160 shows in detail one of the outboard stringers on the component
panel after the 589°K (600°F) test. The opposite outboard stringer contains a
similar blister. It is estimated that some additional load above the 1.78 MN (400K)
level could have been carried by the panel before a complete crippling failure of
outboard stringers would have cccurred,

In Figure 2-161, the predicted and measured loads distribution for the component
panel when subjected to 1.55 MN (350K) at 589°K (600°F) are shown. For com-
parison, the loads distribution predicted at this location for the complete
compression panel are shown alsoc. The good agreement between predicted and
measured loads for the component panel increased confidence in procedures used for
design and analysis.

In summary, many unique desipgn features incorporated in the Compression Panel
were verified by the component panel test program. Also, the ability of a boron
aluminum structure to sustain a complex shear lag load distribution was demon-
strated. 1In addition, it was proven that analytical tools, such as finite element
programs, for conventional materials and structures can be successfully applied to
analysis of composite structures. Other specific accomplishments include:

o Capability to design B/Al load redistribution structures for 589°K (600°F)

environment

o Additional strength at minimum weight provided by titanium interleaves

6 In-plane shear strength
o Fastener bearing strength
o Overall improvement in apparent ductility

o Design and fabrication of tapered B/Al stringers with titanium interleaves

o Design and fabrication of contoured B/Al skins with titanium interleaves

o B/Al stringer closeout fitting design

o Panel thrust post area design using mix of both composite and conventional

materials

o General improvement in overall B/Al manufacturing and design technology

2-170

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST



ER s a =

£Ex

£E3

3 e

™3

BORON ALUMINUM FOR
SPACE SHUTTLE COMPONENTS FINAL REPORT

COMPONENT PANEL IN TESTING MACHINE

2-171

MCDONNELL DOUGLAS ASTROMAUTICS COMPANY - EAST

REPORT MDC E0825
30 JULY 1973

Figure 2-159



BORON ALUMINUM FOR
SPACE SHUTTLE COMPONENTS FINAL REPORT

CRIPPLING FAILURE OF STRINGER ELEMENT

2-172

MCDONNELL DOUGLAS ASTRONAUTICS COMPARNY - EAST

REPORT MDC E0825
30 JULY 1973

Figure 2-160

&)

B

=



BORON ALUMINUM FOR REPORT MDC E0825
SPACE SHUTTLE COMPONENTS FINAL REPORT 30 JULY 1973

P = 350 {(KIPS)

0ADS IBUTION
(6009F)

S 5 %6 e |

PREDICTED ~ COMPRESSION PANEL 17.8 347 49.7 145.5 49.7 347 17.8
- COMPONENT PANEL 23.0 31.2 48.0 133.5 48.0 3.z 23.0
MEASURED - COMPONENT PANEL 23.6 - - 135.0 45.0 4.0 21.2
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Figure 2-161
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APPENDIX A - STRUCTURAL CONCEPTS EVALUATED FOR COMPRESSION PANEL

Threé stfuétural conbepts for the compression panel were evaluated in suf-~
ficient depth for weight and structural arrangement comparison purposes. These
concepts are: skin-stringer, honeycomb sandwich and contoured plate., The skin-
stringer concepts was selected for the design of the compression panel.

The three compression panel concepts considered were 48 inches (1.22 m)
wide and 72 inches (1.83 m) long and were designed for a concentrated ultimate
compressive load of 350,000 1lbs (15553 kN) applied at one end and reacted by a
distributed load at the opposite end. Peaking of the distributed load must not
exceed a uniformly distributed load by more than 30% as illustrated in Filgure A-1,
Shown in Figure A-2 is a weight comparison of the three concepts
considered. Including support frame weight, the skin-stringer and honeycomb
sandwich concepts are nearly equal in weight while the contoured plate concept is
considerably heavier because of the numerous frames required. Methods of analysis
and assumptions used in evaluating the three concepts are summarized in the fol-
lowing paragraphs. '

(a) Skin-Stringer Concept Analysis — A finite element idealization of the

skin-gtringer concept was used to obtain preliminary sizes for the shear panels
and stringers, The use of a MDAC-E compufer program {(CASD) alloﬁed a rapid
determination of preliminary estimates for a minimum weight structure capable of
distributing a concentrated applied load at one end into a uniformly distributed
load at the opposite end. A deflection criteria of uniform deflection at the
distributed load end was also imposed for later element sizing.

The structural arrangement of the skin-stringer panel is shown in Figure A-3
and the finite element idealization is shown in Figure A-4. Due to symmetry of
structure and loads, only‘one half of the panel was idealized., A typical
stringer-skin cross-section is shown in Figure A-5. The unidirectional boron-
aluminum stringers and steel frames are assumed to carry longitudinal and trans-
verse loads only and are simulated by 49 bar elements. The +45° (+ 7/4 rad.)
mid-plane symmetric laminate skinsg are ‘assumed to carry shear only and are ideal-~
ized by 20 shear panels. Skin buckling is assumed to be negligible.

Mechanical properties used for the frames, stringers and skin in this study
are given, in Table A=6, Past boron-aluminum properties at 500°F (534°K) are

assumed equivalent to 600°F (588°K) properties for improved material. Four
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P = 1555 kN (350,000 LBS)

b= 0.6Im (24 IN.)
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COMPRESSION PANEL EXTERNAL LOADS
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RINGS -~ 4130 STEEL AT 600°F (589°K)
E= 29.0x 10° PSI (200 GN/r?)
G= 10,0 x 10° PSI { 69 GN/md)
p = 0.283 LB/INS 7,83 gn/en®)

STRINGERS ~ U.D. BORON-ALUMINUM AT 600°F (589 °K)
EC| = 24.0 x 108 Ps1 (165 GN/m?)
6,7 = 6.02 x 10° PS1 (41.5 GN/md)
Fiu, = 143,0 KS) (0.985 GN/n?)
o = 0.09 LB/N3 (263 gn/cnd)

SKIN - + 459 BORON-ALUMINUM AT 600°F (589°K)
Gyy = 6:65 x 108 P5I 45.8 GN/md)

, F:: = 20 KSI (0,138 GN/md)
p = 0.095LBANS (2.63 gn/em®)

MATERIAL PROPERTIES
Figure A-$

analysis steps as outlined in Figure A-7 were used to obtaln stringer areas and
skin gages for a minimum weight structure satisfying both the uniform loading and
deflection constraints required at the distributed load end. 1In the first step,
the panel was sized to meet the uniform load constraint only, without satisfying
the deflection criteria, The structure sco determined was the minimum weight
structure meeting the uniform loading constraint. However, a support of variable
stiffness is required at the uniform load end and the allowable strength of all
stringers was assumed to be 100 ksi (.69 GN/mz).

In step two, the panel was resized to determine the minimum weight structure
meeting both uniform loading and deflection criteria with allowable stringer
strengths of 100 ksi (.69 GN/mz). The deflection criteria used in step 2 is
that all deflections shall be equal to or less than the center deflection obtained
during step one (Figure A-7).

Based on the internal loads distribution found in step two, revised allow-
ables were determined for each stringer element and employed in step three.

These preliminary revised stringer allowables were based on stringer crippling
strength and long column considerations. The uniform load and deflection con-
straints were again employed in step three.

Based on the stringer areas determined in step three, the stringer allow-

ables were again revised for the fourth resizing step. An additional requirement

A=6
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that all +45° (+ 1/4 rad.) skin laminate thicknesses should reflect multiples

of four plies to maintain mid-plane symmetry was employed in the fourth resizing

0 _ v
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S 069 GN/md  -OADS FROM STEPQI;
i i ] |
| i ! | I
| F—+—11 | bo———- I
L | L Jd
IRIRER! RN
Il « STRUCTURE RESIZED FOR STRENGTH IV. .« STRUCTURE RESIZED FOR STRENGTH AND STIFFNESS
AND STIFFNESS . ALLOWABLE STRENGTH OF STRINGERS BASED ON
. DEFLECTION & £ 5, AREAS DETERMINED IN STEP 1l
. ALLOWABLE STRENGTH OF STRINGERS = 100 KS  MINIMUM GAGES FOR SKIN REVISED TO MULTIPLES OF

= GAGES DETE IN STEPS 11
(0.69 GN/Inz) FOUR PLIES 2 GAGE RMINED TEP

STEPS LEADING TO PRELIMINARY SKIN AND STRINGER SIZES Figure A-7

Preliminary stringer and skin loads and sizes obtained from step four are
shown in Figures A-8 through A-11 and represent minimum weight structure satisfy-
ing both loading and deflection constraints. A summary of weights for the compres-—
sion panel based on step four analysis is given in Figure A-12Z. The resulting
structufe has a lecad distribution at the distributed load end which is within the
design requirement of less than a 30% load peaking as outlined in Figure A-1.

The skin-stringer concept was selected for the compression panel and addi-
tional analyses to support detail design were identified in the following areas:

1. Verify loads distribution for equal deflection as distributed
load end. -
2. Refine idealization of panel

{a) Increase number of elements

A-7
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(b)Y Idealize skin with plate elements

® orthotropic

o

nonlinear
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{c) Utilize multiple elements for stringer cross section

(d} Update allowables based on test results

(e) Revise skin allowables to reflect combined compression

and shear loads

3. Increase number of iterations for improved convergence of stringer
and skin gages.
4, Determine thermal stressg distributions.
20
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| I
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INCHES
L W | ] |
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STRINGER LOCATION — X

STRINGER AXIAL LOADS DETERMINED IN STEP IV
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Step IV
PANEL Figure A-9%
¢
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1 b I wi9 | @Iy | @ @.2n {3.32) 3.22)
" 1 s 0.542 0.475 £.485 0,515 0.522 0.661
3 asn | G a.13 (3.33) (1.3 (4.26)
- LARGE VARIATION IN STRINGER AREAS REQUIRED
Step v Figure A-10
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WEIGHT:

STRINGERS B5LB
(17.50 ke) [ 62.518

SKIN 24018 [ 284 kg
(10,90 kg}
RINGS 27.0 LB
(12.25 kg
TOTAL 89.5 LB
(40,65 kg)
DEFLECTIONS:

350 KIPS (1555 kN)

Y

|, — pEFLECTED
4 SHAPE

|

/1

= l

]

AAAAQ#AAQ?A

Sandl W =

- i N MM EMMN SR SEMES SEENS Sl GINEN SN S

1

{0.612 cm) . 318 KIPS (1414 kN)
0.220 IN. (0.559 cm) PER STRINGER

% YARIATION IN DEFLECTION = 9.5

SUMMARY OF COMPRESSION PANEL SKIN-STRINGER CONCEPT

Figure A-12
A=11

AMCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST



BORON ALUMINUM FOR REPORT MDC E0825
SPACE SHUTTLE COMPONENTS FINAL REPORT 30 JULY 1973

(b) Honeycomb Sandwich and Contoured Plate Concept Analyses - The sandwich

panel and contoured plate design requirements are identical to those of the skin-
stringer as defined garlier. The basic design of the honeycomb sandwich panel is
that the boron-aluminum laminate skins contain lamina oriented to efficiently re-
sist the external lcocads. Sandwich core height was determined from stability re-
quirements considering the panel as simply supported at the concentrated load and
distributed load ends.

The contoured plate design is identical to the sandwich panel skins since
both are designed for strength. Therefore, the contoured plate thickness is
equal to the sum of the two faceplate thickness of the sandwich panel. Frame
spacing for the contoured plate design is based on stability requirements.

Design Points and Loads Criteria — Twenty-one points on one-half of the

panel were selected for the skin thickness calculations. Loads obtained in the
analysis of the skin-stringer concept were used to obtain loads per inch in the
plane of the panel. B8hear flow distributions across the panel, g, at variocus
distances from the concentrated load are shown in Figure A-13., Distributions of
the longitudinal loads, WX, are shown in Figure A-14. All design points selected
correspond to mid-points between stringers of the skin-stringer concept. There-
fore, the WX load at each point was derived form the average of the two adjacent
stringer loads at the corresponding X-distance, using an effective width of 4.36
inches (.111 m) (the stringer spacing in the skin-stringer concept). Transverse

loads, W for points located between transverse frames were cbtained in a

Y:
similar manner, using appropriate effective widths,

Determination of Laminate Allowables - In both concepts, internal loads

carried by the boron-aluminum vary greatly over the entire surface. Therefore
it was necessary to determine the proper ply orientations to withstand these
loads. For these studies laminate ply orientations were limited to combinations
of 0°, +45°, 90° (0, + /4, + /2 rad.) plies. Initially a minimum weight ulti-
mate shear and compression strength envelope shown in Figure A-15 was developed
for laminates containing combinations of 0° and +45° (0 and + 1/4 rad.) plies
only, This envelope was developed based on lamination theory and the maximum
strain failure criteria.

The ultimate strength analysis computer program was used to develop the
ultimate strength envelope, Within this program, the basic lamina and laminate
constitutive relations as well as the lamina stress-strain properties are used to

determine the stress-strain response of the laminate under biaxial in-plane load-
A-12
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ing. By this procedure, the nonlinear stress-strain properties of the boron-

aluminum can be accurately included.

Using this shear and compressive strength envelope, minimum weight combina-

tions of 0° ard +45° (0 and + %/4 rad.) plies to carry the loads at various points

on the panel were determined.

0
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SHEAR LOADS OBTAINED FROM ANALYSIS OF SKIN-STRINGER CONCEPT

Figure A-13
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Skin Thickness Design Curve - Using the allowable compressive strength, F

X’
and the corresponding 0 rad ply percentages at five selected points (A to E as
shown in Figure A-13) the ply thickness design curve shown in Figure A-16 was

obtained. It should be noted that since the allowable strengths, F, and FXY’ are

)4
based on the total laminate thickness, the ratio W/q, the design curve ordinate,
is also equal to the ratio FX/FXY°

Skin Thickness Example Calculations - From Figure A-14 at X = 9 in, and

Y = 2.16 inches:

W

X 31,2 kips/in. (5.46 MN/m)

q 4.15 kips/in. (.73 MN/m)

and,-g = 7.5

From the design curve, Figure A-16: Xo = 0.70
Using Figure A-16, a line with a slope of 7.5 intersects the allowable strength

envelope at FX = 66 ksi (.455 GN/mz). The total laminate thickness, t, is

o oX _ 312
FX 66
t = 0.473 in. (1.20 cm)

The 0° ply thickness, s is

t
o

t (XO)

t, 0.331 in. (.84 cm)

The cross-ply (+45°, + 9/4 rad.) thickness, tos is

t = t-t_ = 0.473-0.331
s Q

t

< 0.142 in, (.36 cm)

Skin Thickness Contours - The theoretical cross-ply and 0° ply laminate

thicknesses were calculated for the 21 selected points and tabulated on plan view
sketches representing ome-half of the panel. Using linear interpolation between
adjacent values, contour lines for several thicknesses were obtained as shown in
Figures A-17 and A-18, The values were selected so that regions of laminate
thicknesses corresponding to multiples of the assumed lamina thickness, .008

inch (.203 mm), were obtained. For the cross-plies, thickness increments of 4
laminae, i.e. .032 in. (.812 mm), were used since the sandwich panel design

must utilize one +45° (+ 9/4 rad.) and one -45 (- 1/4 rad.) lamina per facesheet,
A-16
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Thickness increments of .016 in. (.406 mm), or multiples thereof, were used for
the 0° laminae.

Using the transverse loads, WY, a preliminary analysis was made to determine
the requirements for 90° (7/2 rad.) plies. As a result of this investigation,
the laminate configuration shown in Figuré A-19 was selected.

Final Laminate Configuration - After obtaining the contour sketches describ-

ed above, actual lay-up of the corresponding laminates was investigated, using

the following three constraints: (1) no joggling of cross-plies, (2) no joggling
of 90° or 0° plies in the filament direction, and (3) no curved laminate boundar-
ies. This study led to the configuration consisting or rectangular-shaped laminat-
es shown in Figure A-20,

Sandwich Panel Core Height - These calculations were hased on the assumption

that the panel buckles as a simply supported, pin-ended colum having a 72 inch
(1.83 m) length. It was also assumed that core height could vary lineraly from
top to bottom and that the panel stiffnesses at each end are equal. Using the
design ultimate load of 350,000 lbs (1555 KN) and an additiomal 1.5 factor on the
effective area to account for uncertainties such as neglecting the reduction in
stiffness due to shear deformation, etc., the required core heights were 2.0 inches
(5.08 cm) and 3.7 inches (9.36 cm) at the concentrated-load and uniform~load
end, respectively, ‘

The resulting sandwich panel weights are given in Figure A-2 and include
weights of the boron-aluminum facesheets, braze for joining facesheets to core,

titanium core and steel frames.

Coﬁtoured Plate Concept — The third structural concept considered is the

contoured plate concept with closely spaced frames. This concept utilizes the
same total skin thickness as required by the honeycomb sandwich concept since both
concepts are assumed to have the same intermal loads distribution. It was
determined from buckling analyses that numerous frame supports are required to
stabilize the contoured plate concept. As a result, this concept is not com-
petitive with the skin-stringer or honeycomb sandwich concept designs. However,
this concept may be competitive for a curved panel design where a major portion

of stability is provided by curvature.

A-17
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00

=45

N

+45°

/.

90°

_THIGKNESS
NO. IN. cm
1 0.656 1.67
2 0.512 1,30
3 0.368 0.93
4 0.212 0.69
5 0.240 0,61
6 0.208 0.53
7 0.176 0.45
8 0.144 0.37
9 0.112 0.28
10 0.080 0.20
11 0.064 0.16
12 0.043 0.2
13 0.032 0.08
14 0.016 0.04

THEORETICAL THICKNESS OF 0° PLIES FOR HONEYCOMB SANDWICH
AND CONTOURED PLATE CONCEPTS
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APPENDIX B - TEST PLAN - BORON-ALUMINUM COMPRESSION PANEL

-1.0. INTRODUCTION ~ The purpose of this test plan is to define the procedures

required for performing a structural test at 589°K of the boron-alumiuum compression

panel, - Instrumentation requirements are defined and recommendations for achieving

uniform elevated temperatures on the compression panel are given. In addition,

requirements for supporting the panel during test are specified and a suggested

test sequence is included, The test plan is compatible with the following design

criteria established for the compression panel:

a) Design limit load (D.L.L.} = 1,11 MN (250,000 lbs)

b) . Factor of safety = 1.40

c) Design ultimate load = 1,40 (D.L.L.) = 1.56 MN (350,000 lbs)

d) Design temperature at (D.L.L.) or (D.U.L.) = 589°K (600°F)

e) Prolonged temperature soak, large thermal gradients during heating, cyclic
loading or temperature cycling are not design conditions.

2,0 COMPRESSION PANEL STRUCTURAL DESCRIPTION - The compression panel is composed

of 2 1.83m (6 ft.) x 1.22 m (4 ft.) boron-aluminum tapered skin; seven boron-
aluminum hat section stringers of tapered thickness; and four steel, channel section
frames of constant cross section as shown in Figure B-1. The four frames are spaced
on two foot centers dividing the compression panel into three equal bays. Three
stringers are symmetrically located either side of the centerline stringer on
approximately seven inch centers, The centerline stringer is part of the load
introduction member., A steel plate attached to the panel on the side opposite the
stringers completes the load introduction member. The stringers and frames are
joined to the skin with mechanical fasteners.

3.0 TINSTRUMENTATION -~ Approximately 190 gages are required to monitor deflections,

strains, and temperature distribution throughout the compression panel, Figures B-2,
B~3 and B-4 indicate only the approximate locations suggested for these gages., The
specific placement of instrumentation will be based on location of existing
fasteners and unique structural details., MDAC-E recommendations for exact location:
of gages will be supplied at the request of NASA-MSFC,

Deflection gages will record out-of-plane deflections of the centerline
stringer and one outboard stringer. These gages will be located at the midpoint of

each bay as shown in Figure B-3.

B-1
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Twenty-eight rosette gages are required to monitor shear and biaxial strains

in the skin. Suggested locations of the rosette 'gages are shown in Figure B-2.

Twelve rosettes will monitor the strain distribution of the upper bay, six for the

gecond bay and ten for the third., Rosette gages will be mounted back-to-back near

the center of the shear panels indicated in Figure B-2 to determine any evidence

of panel buckling or bending.

Fifty-two uniaxial strain gages will record longitudinal strain distributien
in the seven hat-section stringers. Gages are placed in groups of two or three as
indicated in Figure B-3, Each group consists of two gages symmetrically positioned
on opposite sides of the styinger, WNear the maximum load end of each stringer, a
third gage mounted on the crown is added to the group. In the load introduction
region two additional gages are attached to the steel thrust plate, This arrange-
ment will indicate any evidence of twisting or bending during the heating and
loading cycles.

MNine uniaxial strain gages monitor the response of the upper and lower frames,.
When grouped in pairs, the gages are attached to both legs of the frame. When only
a single gages is used, it is placed on the inner leg of the frame. Gages are
located at four inches and ten inches from the panel center line in the regions of
high load,

The number of data recording channels selected for continucus review of the
structure under load is twenty-three, These channels are reserved for monlitoring
those structural areas shown by analysis to be critical. Following is a description
of the critical areas and the number of channels required for each.

a) The two inboard shear panels of the upper bay on either ‘side of the centerline
stringer, Three channels are required for each rosette gage mounted in the
center of the panel, Total channels required is six.

b) The two outboard shear panels of the upper bay on either side of the centerline
stringer, B5ix channels are required for the two 'back-to-back" rosette gages
mounted in the center of each panel. Total channels required is twelve,

c) The centerline stringer, Two channels are required, one for each deflectometer
located on the stringer.

d) The outboard stringer, Three channels are required, one for each deflectometer
located on the stringer.,

Ninety-five thermocouples are required to control and monitor the temperature

distribution of the compression panel. Forty-one thermocouples are located in the

B-2
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critical areas of the structure, and provide input signals to a "Data Trak" Programmer
(See Section 4.0). Forty-one monitor thermocouples located adjacent to the control
thermocouples provide temperature read out, and may be used to maintain correct
panel temperature by manual control of the heat lamp bank in the event of a control
thermocouple malfunction. Thirteen additional thermocouples are suggested to
monitor temperature of the steel frames, thrust plate area, and panel base.
Thirty-six thermocouples placed on the frame side of the panel at locations
shown in Figure B~4, monitor and control the skin temperatures of the panel. Forty-
two thermocouples record and control temperature along the length of the seven
stringers, and are mounted in pairs on the stringers on 24 in., centers starting
11 inches from the top of the panel. Eight thermocouples, (2 control and 6 monitor)
are positioned along the panel base, Seven monitor thermocouples are located on
the steel frames nearest the heat lamp banks. The two remaining thermocouples
monitor the temperature in the thrust plate region.

3.1 STRAIN GAGE RECOMMENDATION AND INSTALLATION - Because of the temperature

environment, 589°K (600°F), rosette and uniaxial gages designated as WK-06-250W-350,
WK-03-250BG-350 and WK-09-259BG-350 are recommended for measuring strains in the
shear panels, stringers, and frames of the compression panel respectively. These
gages are of nickel-chromium wire, fully encapsulated in glass fiber reinforced

epoxy resin and are capable of withstanding a temperature of 603°K (625°F) or
greater, These gages are also selected on the basis of matching as near as possible
the coefficient of thermal expansion of the gage to that of the structural component,.
The gages and the high temperature bonding cement (M-bond) required for installation
are manufactured by Micro-Measurement Company.

To assure a good bond at test temperature, the cement requires curing at 450°K
(350°F) for two hours followed by a post cure of 603°K (625°F) fotr one hour. Because
of the thermal stresses and the amount of time required in locally bonding small
groups of strain gages to the compression panel, the use of a furnace is recommended
for the first curing cycle.

Prior to starting the temperature cure, measure and record the "out-of-plane
deflections at several points along each stringer and frame. The minumum number of
measurements along any member should be four. After curing at 450°K (350°F) and with
the compression panel at ambient temperature, repeat all of the "out-of-plane’
measurements. Lf the difference in deflections of the same member is .051 cm
(.020 inch) or greater after completion of the primary bonding cycle, contactIMDAC—E
Composites Group before proceeding with the structural test.
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The M-bond 610 is a non-tacky liquid at room temperature, therefore, the
compression panel should be placed in a furnace in a horizontal, unrestrained positien
with all the gages on the upper surface in their proper position. Each gage requires
a contact pressure of approximately 207 kN/m2 (30 psi) which may be attained either
by clamping or by weights. To assure a uniform pressure distribution on the bonding
surface it is recommended that silicon rubber pads be placed between the clamps or
weights and the gages. Care must be exercised to keep the temperature differential
between adjacent structural components at a minimum, (approximately no greater than
13.9°K (25°F). Since the compression panel is of varying cross sectional area and
consists of different materials, allowance must be made for temperature lag effects
between furnace air temperature, compression panel temperature and compression panel
support structure temperatures. The temperature of the structure should not be
allowed to reach the maximum allowable differential before correctlve measures are
taken to return the temperature within limits.

When the gages are bonded to one surface of the compression panel, the panel
may be turned over and the operation repeated for the remaining gages. The number
of heating cycles to bond all strain gages and thermocouples shall not exceed four.

After curing at 450°K (350°F), the room temperature compression test as
described in Section 6.1 may be performed. To minimize the number of thermal cycles,
post curing at 603°K (625°F) should be done just prior to the elevated temperature
test using the test heat source facilitles. After one hour of post curing, the
temperature may be reduced to the test temperature of 589°K (600°F) and the elevated
temperature test conducted as described in Section 6.2.

3.2 STRAIN GAGE AND DEFLECTOMETER OUTPUT CORRECTIONS - Strain gage readings should

be transmitted to the data acquisition system using the three-wire system to minimize
temperature effects on lead wire resistance. Any zero offset in strain gage output
voltage at room temperature due to unbalanced bridge completion networks, or at 589°K
(600°F) due to differentials in thermal expansion coefficients of the gage and
compression panel should be balanced before testing. This may be accomplished by
either using a signal conditioner balancing network or the data acquisition system
should subtract this offset from the voltage output when the compression panel is
subjected to load.

Errors due to changes in Gage Factor from room temperature to 589°K (600°F)
should be eliminated by programming the correct Gage Factor values, per manufacturer's
specification into the data acquisition system both at room temperature and at 589°K
(600°F).
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3.3  THERMOCOUPLE RECOMMENDATIONS AND INSTALLATION ~ The thermocouples recommended

for monitoring and controlling the temperature of the compression panel are standard
Chromel-Alumel thermocouples, These gages will require bonding to the structure with
M-bond 610 at the locations shown in Figure B-4. Installation of theze gages should
be done simultaneously with the strain gage installation to keep the number of
heating cyeles to a minimum,

4,0 HEAT SOURCE AND METHOD OF TEMPERATURE CONTROL - The heat lamp system described

in this section for the heat source is presented as an example only. This technique
is not required and other techniques such as heated ovens, etc., are acceptable if
the performance requirements stated herein are met,

One hundred and two standard T-3 quartz heat lamps manufactured by General
Electric are recommended for heating the compression panel to a maximum temperature
of 603°K (625°F) (Provision should be made to have about twenty percent spares).

Each lamp is twenty-five inches long and has a power consumption of one hundred watts
per inch, Sixty lamps will heat the frame side of the compression panel and forty-
two lamps will heat the stringers. All heat lamps should be vertically oriented and
located approximately 17 inches from either side of the compression panel skin as
shown in Figure B-5,

The 60 lamps on the frame side of panel are grouped into 18 banks of lamps as
shown in Figure B-5, The recommended spacing between each lamp is three inches.
Vertical overlapping of the lamp holders of each bank of lamps is sufficient to
assure an even temperature distribution to the compression panel skin. Fach lamp
bank should extend four and half inches beyond the vertical sides of the compression
panel, one inch above thé top edge and two inches below the base.

Heat lamps arranged in pairs at two inch spacing, located symmetrically on either
side of each stringer are recommended. Six heat lamps are used for each stringer.
Vertical overlapping of the lamps is the same as heat lamp: banks for the skin.
Aluminum foil facing the heat lamps and backed up with 0.25 inch "Refrasil"
insulation should cover the shear‘panels in the areas between the stringers (See
Figure B-5) to reduce the effects of secondary heating from the stringer heat lamps.
To minimize heat radiation losses and assure a more even heat distribution, reflec-
tors of Alsac-Aluminum are required for lamp banks on both sides of panel.

Control of the heat source to the compression panel may be accomplished by means
of a temperature-time profile and a "Data Trak" programmer, ("Data Trak" is a trade
name and is manufactured by Research Inc.). Each "Data Trak" programmer can control

the temperature to six different areas of the compression in accordance with the
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requirements of a given temperature-time profile. Three "Data Trak" programmers
utilizing eighteen available channels are required for thermal control of the panel
skin. Temperature control of the seven stringers, and base areas requires four
additional programmers, It is suggested that the temperature time profile he
programmed for a structural temperature rise of 2.22°K (4°F) per minute until the
post curing temperature of 603°K (625°F) 1is reached. After one hour at temperature
the temperature should be reduced to the test temperature of 589°K (600°F) at a
temperature reduction rate of 2.22°K (4°F) per minute.

5.0 COMPRESSTION PANEL SUPPORT STRUCTURE - The compression panel requires support

structure to restrict "out-of-plane" deflections. Because of the elevated
temperature environment, the support must allow "in-plane" growth in the wvertieal
and horizontal planes to preclude thermal stresses. Support is required at the
compression panel centerline and along the vertical edges at each of the four frames
as shown schematically in Figure B-6, The clevis fitting and lug support concept
shown in Figure B-6 1is intended to show only the direction where support is required
and where capability for panel motion is required.

Stiffness requirements of the lateral support structure for the compression
panel test and the lateral loads to be reacted by the support structure are defined
in Figures B-7 and B-8 respectively.

As shown in Figure B-7, the maximum lateral deflection permitted by the support
structure at any frame support due to loads applied by the compression panel is
0.03 in. Also the total deflection at any support from all sources (including
structural deflection, alignment, installation, etc,) cannot exceed 0.06 in,
Furthermore, the lateral stiffness of support structure at any frame support point
relative to an adjacent support point must exceed 200,000 1b/in,

Figure B-8 defines the ultimate lateral reactions expected when the 350,000 ib
ultimate compression load is applied to the compression panel., It is recommended
that the support structure at each frame support on a given frame be designed for
the maximum load expected for thgt frame. These loads do not contaln contingencies
for additional loads which may occur due to tolerances in installation and alignment
procedures.

The compression panel base support structure is assumed infinitely rigid,
Because of the anticipated large mass of the base support structure, an insulation
pad of sufficient thickness and compression strength or a heated platen placed
between the compression panel and the base support is required to limit temperature
differential during testing to 27.8°K (50°F). Temperature at the base of the

compression panel may be monitored and controlled as described in Section 4.0.
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The loading head or ram is assumed as infinitely rigid. Distribution of load
from the ram to the compression panel will be by means of a loading plate located
between the ram and the compression panel. Surfaces of the loading plate are to
be flat, square and parallel to within 0.002 m/m, Steel heat treated to at least
1030 MN/m2 (150 KSI) is recommended for the plate. Dimensions and clearances
required are defined on Engineering Drawing T0-6192; the centroid of load application
through the loading head is shown in Figure B-8 and is coincident with the panel
centerline. Temperature control across the loading plate and ram may be attained
in the same manner as that utilized for the base structure.

6.0 LOADING PLAN - The recommended loading plan is divided into two parts. In the
first part, the design limit load (D.L.L.) of 1.11 MN (250,000 1lbs) compression is

applied to the compression panel at room temperature, This is followed by the
elevated temperature test at 589°K (600°F) to the design ultimate load of 1.56 MN
(350,000 lbs) (D.U.L. = 1.4 D.L.L.). Room temperature testing is recommended prior
to post curing of the gage adhesive because the service life of strain gages at
589°K is limited, To minimize the effects of temperature, it is recommended that
the post-cure of the adhesive and the elevated temperature test be combined dinto
one operation as outlined in Section 3.1. Test procedures at room temperature are
outlined in Section 6.1 and 6.2 respectively.
6.1 COMPRESSION PANEL ROOM TEMPERATURE STATIC TEST -

a) Load the compression to 5% D.L.L. 55.5 kN (12,500 lbs compression).

b) "Zero out" all structural gages per Section 3,2,

¢} Increase the compression load to 20% D.L.L, 222 kN {50,000 1bs) and record
all gage readings.

d) Increase the load in increments of 20% D.L.L. to 100% D.L.L.

e) At each load level (40%, 60%, 80% and 100%Z D.L.L.) record load, deflections
and strains.,

f) At 100% D.L.L., reduce load to 20% D.L.L. in ZOZ'D.L.L. incraments and record
load, deflections and stfains.

g) It is recommended that a given load level be maintained just long enough
to record all data and review data from critical areas identified in
Section 3.0.nnly.

6.2 COMPRESSION PANEL ELEVATED TEMPERATURE STATIC TEST -

a) With the heat lamps in place as described in Section 4.0, heat the compression

panel to the post curing temperature of 603°K (625°F) at a temperature rise

rate of 2,22°K (4°F) per minute.
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b) Maintain the compression panel at the post~cure temperature for one hour,

c)

d)

el

£)

g)

h)

i)

i)

After one hour at 603°K (625°F) reduce the temperature to the test temperatur
of 583°K (600°F) at a temperature reduction rate of 2,22°K (4°F) per minute.
After panel temperature stabilization, apply 5% D.L.L. Allow panel temperatu

to stabilize again 1f heat sinks influence temperature.

"Zaro-out'" all structural gages per Section 3.2

Increase the compression load to 20% D,L.L. and record all gage readings.
Increase the compression load in increments of 20% D.L.L, to 100% D.L.L.
and in 107 increments beyond D.L.L. to design ultimate load (1.4 D.L.L. =
D.U.L.),

If structure sustains D,U,L. without failure continue increasing load
beyond D.U.L. in increments of 10% D.L.L, until failure occurs.

At each load level, record the applied load, deflections, strains and

structural temperatures,

Remain at a given load level just long enough to record all data and review

data as necessary from the critical areas identifled in Section 3.0.
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FIGURE B-1
COMPRESSION PANEL
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" FIGURE ‘B-2
STRAIN GAGE ROSETTE LOCATIONS ON COMPRESSION
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FIGURE B-2 NOTES:

1.

Gages are symmetrically located about the panel center line; a total of 28
gages are used.

Gages are to be centered between stfingers.

If necessary, the position of back-to-back gages should be shifted slightly to
avold skin tapering.

Details of channels and hat sections are omitted for clarity.

WE-06-250WR~350 rosette gages are recommended.

Mount gages to structure with high temperature adhesive M-bond 610. Cure bond
at 450°K (350°F) for two hours followed by post curing at 603°K (625°F) for
one hour. Post cure at the time of the elevated temperature test.

Maintain the entire panel at 589°K (600°F) for five minutes prior to loading

at temperature.
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FIGURE B-3
STRINGER AND FRAME STRAIN GAGE AND
DEFLECTOMETER 'LOCATIONS
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FIGURE B-3 NOTES:

]-a
2.

The total number of strain gages used 1s 63.

Number shown in parenthesis indicates a group of uniaxial gages used at that
location,

Gages located on steel thrust plate, -

Five deflectometers are used. Two are located on the center line and three
on one outboard stringer,

WK-03-250BG-350 uniaxial strain gages required for stringers.
WK-09-250BG-350 umiaxial strain gages required for frames.

Mount gages to the panel structure with high temperature adhesive M-bond 610.
Cure bond at 450°K (350°F) for two hours followed by post curing at 603°K
(625°F) for one hour, Post cure at the time of elevated temperature test.
Maintain the entire panel at 589°K (600°F) for five minutes prior to loading

at temperature,
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FIGURE B-4
COMPRESSION PANEL THERMPCOUPLE LOCATIONS
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FIGURE B-4 NOTES:

1,

Ninety-five thermocouples are shown. TForty-one for control and fifty-four

to monitor the panel temperature. They are located symmetrically about the
panel centzr line.

Thermocouples mounted on the stringers are located on the crown near the mid-
point of each bay.

Thermocouples mounted on the skin are located on the frame side near the
midpoint of each shear panel.

Mount thermocouples to the compression panel with high temperature adhesive
M-hond 610, Cure bond at 450°K (350°F) for two hours followed by post

curing at 530°K (625°F) for one hour. Post cure at the time of elevated

temperature test.
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FIGURE B-5
HEAT LAMPS INSTALLATION

=
-
:
o
1
I }
= 1
= e
|
:
[=]
l .
—T

S
'Si.i_
‘\.1
L |
S |

\
co's 0 O o‘o‘o“o"o"}

———d

L,
"H""z.ocrA

%0 o0 00 O

o
|

B-16

MCDONNMNELL DOUGLAS ASTRONAUTICS COMPANY - EAST



BORON ALUMINUM FOR

REPORT MDC E0825

SPACE SHUTTLE COMPONENTS FINAL REPORT 30 JULY 1973

FIGURE B-5 NOTES:

[
. .

B b PbbH

Structure and reflectors not shown In plan view for elarity,

Three inch center to center distance between heating lamps on frame side
Edge of structure.

Extension of heat lamps beyond edge of structure.

Insulation or heated platen.

Heat lamp bank reflectors, typical for forward and aft side of compression
panel,

Typical heat insulator on stringer side of panel. One quarter inch thick

"Refrasil" sandwiched between shear panels and aluminum foll reflectors.

‘Distance between each pair of heat lamps symmetrically located ahout stringer

centerline,
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FIGURE B-6
COMPRESSION PANEL "QUT-OF-PLANE" SUPPORT FITTING CONCEPTS
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FIGURE B-6 NOTES:

1.

BB b > PP > -

Fitting concept shown in area "A" typical for fittings along both edges of
compression panel at each frame., Eight fittings required.

Fitting concept shown in area "B" typical for compression panel centerline
fittings at each frame. Four fittings required.

Close tolerance holes required for fastener pattern between fitting and frame
interface,

Close tolerance hole required for connecting pin.

Free play required between top side of lug and clevis for vertical thermal
expansion,

Rolling friction joint require& in conjunction with close tolerance slotted
hole.

Free play required between pin and lug slot for lateral thermal expansion.
Insulation pad between channel to lug interface.

Maximum width of centerline support frame to allow installation between heat
lamp banks.

Plate welded to bottom of support frame for connecting pin support.

Minimum spacing required to allow installation of heat lamps and reflectors

forward of test fixture support structure,
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FIGURE B-7
STIFFNESS REQUIREMENTS OF

LATERAL SUPPORT STRUCTURE
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FIGURE B-7 NOTES:

1, Deflection Requirements:

a) Deflection, §1 or 85, from applied loads at any frame support point relative
to plane x - z < 0,030 in,

b) Relative defeletion, 83, of support points on adjacent frames from
applied loads < 0.030 in.

¢} Maximum accumulated deflection at any point shall not exceed 0.06 in.
Accumulated deflection is defined as the sum of deflecticons from
installation, alignment and application of ultimate loads.

d) Plane x - z 1s defined by the intersection of skin and stringers in the
unloaded pogition. Plane x - y remains perpendicular to the fixed head of
the loading machine.

2. Relative stiffness between support points on adjacent frames will be
> 200,000 1b/in.

3, Loads distribution shown in Figure B-8 has been assumed.
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FIGURE B-8
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